DUALRec: A Hybrid Sequential and Language Model Framework for Context-Aware Movie Recommendation

Yitong Li

Msc Behavioural Data Science

WHAT IS RECOMMENDER?

'A recommendation engine, also called a recommender, is an artificial intelligence (AI) system that suggests items to a user. Recommendation systems rely on big data analytics and machine learning (ML) algorithms to find patterns in user behavior data and recommend relevant items based on those patterns.' -- IBM (2024)

DUALREC FRAMEWORK

multi-modal LSTM + LLM Semantic Reasoning = Enhanced Personalized Recommendations

Development Environment & LLM Selection

Coding:

- Google Colab Pro
- A100 GPU
- 40GB GPU RAM
- Python 3

LLM Selction:

- DeepSeek V3-685B
- Mistral 8B
- DeepSeek-R1-Distill-Qwen-1.5B (for finetuning)
- Mistral 7B (for finetuning)

Dataset

- MovieLens 1M dataset
- Stable benchmark dataset with 1 million ratings from 6000 users on 4000 movies.
- Each rating entry includes user ID, movie ID, rating value (1-5), movie titles, movie genres, and timestamp.

Data manipulation

- Movie filtering: Top 1,000 most frequently watched movies
- Movie ID → 128-dim embeddings
- Tokenized titles (Keras Tokenizer)
- Multi-label genre information- 18 movie genres
- Data split: 70% train / 15% validation / 15% test

Model Stage 1- Sequential Behaviour Modelling

- Group interactions by user and sort chronologically
- Create sequences of 30 consecutive movies with the 31st as target
- Tokenize movie titles (max 10 tokens) → 64-dim embeddings → global average pooling
- Generate 30 sequences per user using sliding window approach
- Genre as binary multi-hot vectors, 18 categories

- Input: Sequence of 30 x d (where d = combined feature dimensions)
- Layer 1: 256 units, returns sequences (local dependencies)
- Layer 2: 128 units, final hidden state, return global representation of user long-term preference.
- Dropout: 0.3 for both layers
- Output: Softmax over 1K movies → top-1 prediction

Example LLM Recommendations:

Based on the user's preference for animated, familyfriendly films with adventurous and musical elements, here are three recommendations that align with their viewing history:

- 1. Tarzan (1999) Genres: Animation, Adventure, Children's, Musical
- 2. The Emperor's New Groove (2000) Genres: Animation, Adventure, Children's, Comedy
- 3. Lilo & Stitch (2002) Genres: Animation, Children's, Comedy, Science Fiction

• Free form text generation

 Structured prompts, no settled list of movies to choose for recommendation

Model Stage 3- LoRA Fine-Tuning and Post-Generation Optimization

Method:

- Low-Rank Adaptation (LoRA) for parameter efficient fine tuning
- Two model variants (DeepSeek-Qwen 1.3B and Mistral-7B)
- Instruction-following text generation

Finetuning Data Construction Process:

- For each user, take first 5 movie viewing sequence as input
- Use the last 5 movies the user actually watched as the supervised learning window
- Combined with top-1 prediction from Stage 1 LSTM

Instruction "Given user's watched movies and LSTM recommendation..." Input Watched: The Matrix, Inception, Fight Club... LSTM Suggests: Interstellar I. LOTR: Fellowship 2. Minority Report 3. Bourne Identity Sentence-BERT all-Minil.M-Lo-v2 384-dim embeddings Cosine similarity I. Blade Runner (1982) - sim: 0.8542 2. The Dark Knight (2008) - sim: 0.7231 3. LOTR: Ivo Towers (2002) - sim: 0.6897 Mistral-7B 76 Parameters + LotA Adapters LORA Configuration - r=8, alpha=16, dropout=0.1 - larget: q_proj, v_proj (attention layers) - raining: 3 epochs, batch=2, FP16 Training: Generated Recommendations 1. The Lord of the Rings: The Two Towers (2002) 2. Blade Runner (1982) - sim: 0.8542 3. The Dark Knight (2008)

Result & Discussion

- Base Model Quality > Fine-tuning: DeepSeek V3 (pre-trained) outperformed fine-tuned DeepSeek-Qwen
- Instruction-Following Architecture Advantage: Mistral-7B achieved highest HR@1 and NDCG@1
- Parameter Efficiency: Fine-tuned Mistral-7B > Mistral-8B.
 Task-specific adaptation more effective than scaling model size
- Limited Top-K Improvement: Minimal HR@1 → HR@5 gains across DUALRec variants
- Traditional models (NARM, STAMP): Optimize discriminative spread across candidates
- **LLM-based:** Generate semantically cohesive but homogeneous recommendations

Model	HR@1	HR@5	NDCG@1	NDCG@5	0.25 T	(a) Perform	nance Comparisor	n Across DUALRec	Variants
MostPop	0.0004	0.0070	0.0004	0.0053		HR@1 HR@5			0.2214
SLIM	0.1270	0.3600	0.1270	0.2530		111.05			
FPMC	0.1132	0.3748	0.1132	0.2464	0.20				0.1847
NARM	0.1692	0.5230	0.1692	0.3501					
STAMP	0.1584	0.5078	0.1584	0.3367	gu				
GCE-GNN	0.1312	0.4748	0.1312	0.3044	0.15 -	0.1371 0.1425			
MCPRN	0.1434	0.4758	0.1434	0.3157	ance				
HIDE	0.1498	0.4998	0.1498	0.3256	Performance			0.0907	
Atten-Mixer	0.1490	0.4932	0.1490	0.3216	B 0.10			0.0810	
UniSRec	0.0508	0.2508	0.0508	0.1459			0.0583 0.0605		
NIR	0.0572	0.2326	0.0572	0.1436	0.05 -				
DUALRec – DS V3	0.1371	0.1425	0.1371	0.1406					
DUALRec – Mistral 8B	0.0810	0.0907	0.0810	0.0871					
DUALRec - DS Qwen Finetuned	0.0583	0.0605	0.0583	0.0597	0.00	DS-V3	DS-Owen	Mistral 8B	Mistral 7B
DUALRec - Mistral 7B Finetuned	0.1847	0.2214	0.1847	0.2078		Fine-tuned Fine-tuned DUALRec Variants			