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from 6000 users on 4000 movies.

Each rating entry includes user ID, movie ID,
rating value (1-5), movie titles, movie genres,
and timestamp.

Movie ID — 128-dim embeddings
Tokenized titles (Keras Tokenizer)
Multi-label genre information- 18 movie genres
Data split: 70% train / 15% validation / 15% test

Model Stage 1- Sequential Behaviour Modelling
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e Group interactions by user and sort chronologically

e Create sequences of 30 consecutive movies with the 3lst as target
» Tokenize movie titles (max 10 tokens) = 64-dim embeddings — global

average pooling

e Generate 30 sequences per user using sliding window approach

e Genre as binary multi-hot vectors, 18 categories

(where d = combined
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Example LLM Recommendations:

Model Stage 2- LLM based recommendation generation

Below is a user's movie watching history:

Bug's Life, A (1998) (Animation, Children's, Comedy)

- Antz (1998) (Animation, Children’s)

LLM

Semantic

- Hercules (1997) (Adventure, Animation, Children's, Comedy, Musical)
- Mulan (1998) (Animation, Children's)

Pocahontas (1995) (Animation, Children's, Musical, Romance)

Reasoning

Based on this, the system (LSTM) recommends:
Natural Language

Mission to Mars (2000). Generation

Now, as a helpful assistant, recommend 3 more full movie
titles with release years and genres that this user would
likely enjoy next.

e Input:
Input Layer
(batch_size, 30, 256) Layer Types:
256 = 128 + 64 + 64
B Input
B LsT™
Dropout [ J
Il Cense
Sequence Length: 30
[ J
LSTM Layer 2
units=128, return_sequences=False
Output: (batch_size, 128)
[ J
Dense Output Layer °

units=1000, activation="softmax’
Output: (batch_size, 1000)

feature dimensions)

Layer 1: 256 units, returns
sequences (local
dependencies)

Layer 2: 128 units, final
hidden state, return global
representation of user
long-term preference.
Dropout: 0.3 for both layers
Output: Softmax over 1K
movies — top-1 prediction

Based on the user's preference for animated, family-

friendly films with adventurous and musical elements, here

are three recommendations that align with their viewing
history:

1. Tarzan (1999) Genres: Animation, Adventure, Children's,
Musical

2. The Emperor's New Groove (2000) Genres: Animation,
Adventure, Children's, Comedy

3. Lilo & Stitch (2002) Genres: Animation, Children's,
Comedy, Science Fiction

¢ Free form text
generation
Structured
prompts, no
settled list of
movies to choose
for
recommendation

Model Stage 3- LoRA Fine-Tuning and Post-Generation

Optimization
Method:

* Low-Rank Adaptation (LoRA) for parameter efficient fine tuning
e Two model variants (DeepSeek-Qwen 1.3B and Mistral-7B)

* Instruction-following text generation

Finetuning Data Construction Process:

* For each user, take first 5 movie viewing sequence as input
» Use the last 5 movies the user actually watched as the supervised

learning window

e Combined with top-1 prediction from Stage 1 LSTM

Target Qutput
ellowship 2. Minority Report 3. Bourne Identity

Sentence-BERT LSTM Reference g

all-MiniLM-L6-v2 Interstellar .

384-dim embeddings B Generated Recommendations
Cosine simiarity 1. The Lord of the Rings: The Two Towers (2002)

2. Blade Runner (1982)

Re-ranked by Similarity 3. The Dark Knight (2008)

Result &Discussion

e Base Model Quality > Fine-tuning: DeepSeek V3 (pre-
trained) outperformed fine-tuned DeepSeek-Qwen
Instruction-Following Architecture Advantage: Mistral-
7B achieved highest HR@1 and NDCG@1

Parameter Efficiency: Fine-tuned Mistral-7B > Mistral-8B.

Task-specific adaptation more effective than scaling
model size

Limited Top-K Improvement: Minimal HR@1— HR@5
gains across DUALRec variants

Traditional models (NARM, STAMP): Optimize
discriminative spread across candidates

LLM-based: Generate semantically cohesive but
homogeneous recommendations
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Link to Full Paper:
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