Uncovering Inference Computation Scaling for Feature
Augmentation in Recommendation Systems

Weihao Liu Zhaocheng Du Haiyuan Zhao
Renmin University of China Huawei Noah’s Ark Lab Renmin University of China
Beijing, China Shenzhen, China Beijing, China

weihaoliu@ruc.edu.cn

Wenbo Zhang

Renmin University of China
Beijing, China

zhaochengdu@huawei.com

Xiaoyan Zhao
The Chinese University of Hong Kong
Hong Kong, China

haiyuanzhao@ruc.edu.cn

Gang Wang
Huawei Noah’s Ark Lab
Shenzhen, China

zhangwenbo@ruc.edu.cn xzhao@se.cuhk.edu.hk wanggang110@huawei.com
Zhenhua Dong Xiao Zhang Jun Xu*
Huawei Noah’s Ark Lab Renmin University of China Renmin University of China

Shenzhen, China
dongzhenhua@huawei.com

Abstract

Large language models have emerged as powerful tools for feature
augmentation in recommendation systems. However, existing meth-
ods relying on quick inference often suffer from incomplete feature
coverage and insufficient specificity in feature descriptions, making
it difficult to capture fine-grained user preferences and weakening
overall performance. Inspired by the success of inference scaling in
math and coding tasks, we explore whether scaling inference can
address these limitations and enhance feature quality.

Our experiments show that scaling inference leads to signifi-
cant improvements in recommendation performance, with a 12%
increase in NDCG@10. The gains can be attributed to two key
factors: feature quantity and specificity. In particular, models using
extended Chain-of-Thought (CoT) reasoning generate a greater
number of detailed and precise features, offering deeper insights
into user preferences and overcoming the limitations of quick infer-
ence. We further investigate the factors influencing feature quantity,
revealing that model choice and search strategy play critical roles
in generating a richer and more diverse feature set. To our knowl-
edge, this is the first work to apply inference scaling to feature
augmentation in recommendation systems, bridging advances in
reasoning tasks to enhance personalized recommendation.

ACM Reference Format:
Weihao Liu, Zhaocheng Du, Haiyuan Zhao, Wenbo Zhang, Xiaoyan Zhao,
Gang Wang, Zhenhua Dong, Xiao Zhang, and Jun Xu. 2025. Uncovering

*Jun Xu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys °25 Workshop, Prague, Czech Republic

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

Beijing, China
zhangx89@ruc.edu.cn

Beijing, China
junxu@ruc.edu.cn

Inference Computation Scaling for Feature Augmentation in Recommenda-
tion Systems. In Proceedings of Proceedings of the Nineteenth ACM Conference
on Recommender Systems (RecSys "25 Workshop). ACM, New York, NY, USA,
11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Large language models (LLMs) have recently become a prevalent
and effective approach to feature augmentation in recommendation
systems [35, 37, 86, 87]. By leveraging their generative capabilities,
LLMs can produce a range of item [1, 49] or user-level [65, 66] fea-
tures—ranging from high-level product attributes [68] to nuanced
decision factors [56]—thereby enhancing recommendation perfor-
mance!. However, most existing methods rely on quick inference
(also known as System-1 thinking) [30] to generate these features,
which often leads to issues such as incomplete feature coverage and
insufficient specificity [29]. As a result, these fast-thinking models
lack depth analysis and miss some critical dimensions of user pref-
erences, so the resulting features may fall short in capturing the
subtle decision-making factors that differentiate preferred items
from disliked ones.

A concrete example illustrates this limitation: when using a
standard LLM like gpt-4o0-mini [43] to analyze a user’s interactions
with musical instruments, it generates a vague feature such as
“Component Functionality” However, this feature lacks the specific
details that truly matter to a musician’s decision-making process,
like “Enhanced Durability,” “Surface Look,” and “Material Type” In
contrast, when using a model with extended Chain-of-Thought
(CoT) [67] reasoning, like 01-mini[45] or 03-mini [46], these more
detailed and personalized features are uncovered, resulting in a
richer and more precise feature set. This example highlights how
deeper reasoning allows LLMs to better capture the nuances of
user preferences, emphasizing the need for inference scaling to
overcome limitations of quick thinking.

!In this paper, a feature refers to a plain-text string generated by an LLM. It can be
encoded for use in traditional recommenders or used directly in LLM-as-Rec prompts.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

These observations motivate us to ask: can inference scaling—an
approach that allocates more computation to allow deeper reason-
ing [44, 55]—help overcome the limitations of quick inference in
recommendation settings? Inspired by its success in domains such
as math [64] and code generation [85], we explore whether deeper
reasoning can also uncover richer, more interpretable user-level fea-
tures for better recommendations. Unlike prior work that focuses
on scaling model size or data volume [80, 81, 83], we examine how
extended reasoning chains improve feature generation. Specifically,
we investigate the following research questions:

RQ1: Can inference scaling improve recommendation per-
formance, and if so, to what extent? We compare baseline LLMs
(e.g., gpt-40-mini) with models that use extended reasoning (e.g.,
ol-mini and 03-mini). Our experiments show that models with
long-CoT reasoning outperform those without, achieving a 12%
increase in NDCG@10. This demonstrates that extended reasoning,
which has proven effective in math and coding tasks, can also en-
hance recommendation models. Interestingly, while algorithms like
Beam Search [69] and Monte Carlo Tree Search (MCTS) [7] have
achieved significant success in other domains, they do not perform
as well as the Best-of-N [12] strategy for feature augmentation in
recommendation tasks. These findings suggest that deeper infer-
ence, combined with the appropriate search strategy, can lead to
substantial improvements in recommendation performance.

RQ2: Which factors drive these performance gains? We
observe that performance improvements are largely driven by the
increased feature quantity and enhanced specificity achieved through
inference scaling. We use feature quantity as a proxy for reasoning
depth: more unique valid features indicate a deeper exploration
of user preferences, thereby addressing the issue of incomplete
feature coverage. To assess this, we plot the number of unique valid
features generated by different LLMs against their recommendation
performance, as shown in Figure 1. Our results reveal a positive cor-
relation: models like DeepSeek-R1 [23] and 03-mini, which generate
the most features, also deliver the best performance. In addition,
using an LLM-as-a-judge [88] approach, we find that inference scal-
ing models consistently produce more detailed and precise features
compared to non-scaled models, effectively mitigating the problem
of insufficient specificity.

RQ3: Given that feature quantity influences performance,
what factors affect the number of generated features? We
investigate how model families, long-CoT reasoning, and model size
impact the overall quantity of generated features. Additionally, we
explore the effect of search strategies. Our results show that feature
generation is not merely the sum of individual steps—pursuing local
optimality at the step level does not always lead to overall optimality.
Step-level methods like Beam Search and MCTS underperform
compared to the solution-level Best-of-N approach in producing
a larger number of useful features. These findings highlight the
important interaction between models and search strategies in
uncovering a more comprehensive set of features.

In summary, our contributions are as follows:

(1) To our knowledge, we are the first to explore inference scaling
to address limitations in feature augmentation for recommendation
systems, bridging insights from reasoning tasks to personalization.

(2) We show that inference scaling leads to better recommenda-
tion performance by increasing feature quantity and specificity.

Liu et al.
L DccpScck-Rl'
—_ 03-mm& Pots
&4 ot
&) DeepSeek-V3. o
o) el
% gemini-2.0-flash-thinking, L7
g4 ini-2.0-flasl® .
151 gemini-2.0-flash - R
g Qwen2.5-32B-Instruct ’,/ﬁwen2.5 7B-Instruct
-

“§ 40 Qwen2.5-14B-Instryct~”"
e L7
_§ ,/OT—minL
g <
'g 39 Pﬁeﬁseek’R]’.-gpl»4o»mini
mg) _Dstill-Qwen-32B
£ QwQ-32B-Preview
§ 38 DccpScck-Rl.- d
~ Distill-Qwen-14B DeepSeek-R1-

Distil]—Qwen—7B.

3.4 3.6 3.8 4.0 42

Log10 of the Quantity of Unique Valid Features

Figure 1: The positive correlation between recommendation
performance and the number of unique valid features gen-
erated by different LLMs. The red dotted line represents the
best-fit line of the data.

(3) We provide an in-depth analysis of how different models and
search algorithms influence feature generation, highlighting their
role in enhancing performance.

2 Probing Inference Scaling for
Recommendation Systems

In this section, we provide an overview of the tasks, our inference
scaling strategies, and the experimental setup.

2.1 Task Formulation

We adopt a typical sequential recommendation setting [19]. Let
U be the set of users and I the set of items. Each item i € I has a
unique ID and some side information (like title and description).
The rating ry,; € {0, 1} shows whether user u liked (1) or disliked
(0) item i. Given a user u € U and their interaction history H;, =
(i1, 2. .., 1 [Ha|), we use LLMs to infer the features that differentiate
items the user likes from those the user does not. The features
are represented as F, = {f;, fl%, el f,lf] }, where each f,i is a text-
based factor (e.g., “Age Range” or “Complexity Level” as shown in
Figure 2). The final goal is to learn a sequential recommendation
model ®(H,,) that predicts the user’s next target item i* € I
from a set of candidates.

2.2 Inference Scaling Procedure

Our evaluation framework is shown in Figure 2. Inspired by [79],
we frame our inference scaling procedure from a reinforcement
learning (RL) perspective with the following elements:

Policy Model is responsible for generating features that cap-
ture user preferences. Given a user’s interaction history, includ-
ing item titles, descriptions, and user ratings (all directly from
the original dataset), the model is prompted to find differences
between liked and disliked items and generate potential features
for recommendations. We experiment with 14 different LLMs as
policy models to evaluate how their outputs affect performance.

Uncovering Inference Computation Scaling for Feature Augmentation in Recommendation Systems

Prompt: You are a user behavior analyst. Now a [user ID] interacted with the following products: |
[Item Title 1], [Item Description 1], [User Rating 1].
[Item Title 2], [Item Description 2], [User Rating 2].
What do you think is the biggest difference in attributes between these items that this user has
rated high and low?
. Return the most likely feature you can think of and the description of this feature.

/3 Policy Model Features

History . 5
_______ Based on the historical user behavior

; B "\
W‘? tVJ. provided, I think the reasons why users

! make these decisions can be attributed to:

& ‘ 1. Age Range:

2. Complexity Level:
3. Sound Features:

Search
Strategy

Root

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Prompt: You are an impartial judge evaluating the quality of feature generated by an assistant.
Given the user’s rating history and generated features below:

Determine whether each feature can effectively differentiate between the user's high-rated and
low-rated items. Evaluate each feature one by one.

Downstream Recommenders

Reward Model Valid Features LLM-as-Rec @
* [User History]
Age Range [Valid Features]
Complexity Level [Item Candidates]

Text Traditional

Fmbeddi R d

Root

a Wi

Solution Level

User Timeline

&
S

Sampled
Negative Items

Step Level

Figure 2: The whole evaluation framework of LLMs for feature augmentation in recommendation systems. The policy model
generates user preference features using different search strategies. These features are then evaluated by a reward model to
identify those that effectively differentiate between liked and disliked items. The valid features are used to enhance both
LLM-based and traditional recommendation models. Among the search strategies, Best-of-N operates at the solution level,

while Beam Search and MCTS operate at the step level.

These include: (1) ® GPT series: gpt-4o-mini [43], o1-mini [45],
03-mini [46]. (2) ¥ Qwen series: Qwen2.5-Instruct in 7B, 14B, and
32B sizes [72], plus QwQ-32B-Preview [61]. (3) & Gemini series:
gemini-2.0-flash [16] and gemini-2.0-flash-thinking-exp [16]. (4)
@ DeepSeek series: DeepSeek-V3 [36] and DeepSeek-R1 [23], in-
cluding its distilled Qwen-based models (7B, 14B, 32B)?.

Reward Model evaluates the features generated by the policy
model, designating them as valid if they successfully distinguish
between a user’s liked and disliked items. Only those valid features
are used in downstream recommendation tasks. Specifically, we
use Qwen2.5-7B-Instruct [72] as the reward model.

Search Strategy guides how the policy model explores and
selects features. Various strategies can be employed, such as Best-
of-N [12], Beam Search [69], or Monte Carlo Tree Search (MCTS) [7].
These methods help balance the exploration of new features with
the reuse of promising ones. They are consistent for all policy
models. Details of each strategy can be found in Appendix A.1.

2.3 Downstream Recommendation Tasks

To evaluate how useful the generated features are, we conduct
comprehensive benchmarking across different types of sequential
recommendations, including LLM-as-Rec and traditional recom-
mendation models.

2.3.1 LLM-as-Rec. We use valid features, user history, and can-

didate items as input to LLMs. Specially, we adopt gpt-40-mini

2We refer to DeepSeek-R1-Distill-Qwen-7B simply as DeepSeek-R1-7B, and similarly
for 14B and 32B.

to perform the following recommendation tasks: (1) Direct Rec-
ommendation (DR) [38]: A listwise ranking method where the
model ranks C candidate items based on valid features and the
user’s history. The prompt is in Appendix Figure 6. Each item in
the history contains a title, a textual description, and the user’s
rating, all taken directly from the original dataset. (2) In-Context
Learning (ICL) [14]: Similar to DR, but uses a one-shot prompt
example to help the model rank candidates. (3) Next Item Predic-
tion (NIP) [21]: The model predicts the next item a user is likely to
interact with, based on their history and a set of C candidate items.

2.3.2 Traditional Recommenders. We also incorporate generated
features into traditional recommendation models using the LHUC
framework [58]. Specifically, for each user u, we join their valid
features ¥, into a string, encode it with bge-m3 [9] into text embed-
ding E;;, and map it through two MLP layers to match the hidden
size of the recommendation model. Denote the recommendation
model as R, the user’s sequential representation is:

R(Hy,) o sigmoid(MLP(Ey)),

where o denotes the element-wise multiplication. In this way, we
can incorporate the user’s features into the sequential embedding.

We evaluate the following state-of-the-art sequential recommen-
dation models: (1) SASRec [31]: A representative baseline for se-
quential recommendation, which utilizes a Transformer-based [63]
architecture to model users’ sequential interactions. (2) LRURec [77]:
A recently proposed model using linear recurrent units [22, 47] for
faster inference.

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Table 1: Statistics of the two datasets.

Dataset #Users #Items #Interactions
Toys 3,962 11,119 65,099
Instruments 1,411 6,317 23,804

2.4 Experimental Setup

2.4.1 Datasets. We conducted experiments on two public datasets:
Toys and Instruments, which correspond to the “Toys and Games”
and “Musical Instruments” categories in the Amazon dataset [42].
We selected these datasets because their moderate size makes our ex-
perimental pipeline feasible when testing across 14 different LLMs,
keeping both time and financial costs manageable. The statistics
for each dataset are provided in Table 1.

2.4.2 Metrics. For DR, ICL, and traditional recommendation mod-
els, we report HIT@K and NDCG@K for K € {5,10} as the
evaluation metrics, which are widely used in sequential recommen-
dation [59, 60, 74]. NDCG places higher weight on items ranked
at the top, while HIT treats all positions equally and essentially
measures recall. For the NIP setting, we use HIT to measure predic-
tion accuracy. In the LLM-as-Rec setting, to ensure that LLM does
not produce invalid outputs (such as missing or duplicate items),
we also report the Valid Rate, which measures the proportion of
compliant rankings.

2.4.3 Details. We adopted the leave-one-out strategy, commonly
used in previous work [3, 13, 89]. For each user u, the final inter-
acted item i|¢y, | is set aside as the test item, while all previously
interacted items constitute the training set [24]. For training tradi-
tional recommendation models, each positive interaction is paired
with a randomly selected negative item, and we optimize the mod-
els using BPR Loss [50]. Both SASRec and LRURec use 2 layers, a
dropout rate of 0.3, and a learning rate of 0.001. The batch sizes are
128 for the Toys dataset and 32 for Instruments. During inference,
we randomly sample C — 1 negative items for each user and rank
them together with the ground-truth item [31]. Following [34, 71],
We set C = 20 for LLM-as-Rec and C = 1000 for traditional recom-
mendation models. For Best-of-N and Beam Search, we use N = 4
beams and M = 1 new branch per beam due to the computational
time limit. The maximum output length is set to 8192 tokens. For
Beam Search and MCTS, the tree depth (i.e., maximum step count)
is set to 50. For more details on the model implementation, please
refer to the code link.

3 Impact of Inference Scaling on
Recommendation Performance (RQ1)

In this section, we first investigate whether inference scaling can
enhance the performance of recommendation systems.

3.1 Effect of Different Policy Model Features

We examine how the choice of policy model influences recom-
mendation quality when features are generated with a basic CoT
strategy. The results for LLM-as-Rec and traditional recommenda-
tion models are shown in Table 2 and 3, respectively. Because each

Liu et al.

setting uses a different number of candidate items, the two tables
should not be compared side by side. Key findings are summarized
below:

(1) Positive Impact of Features: Overall, adding distinguish-
able features that capture user preferences improves the recom-
mendation performance of the LLM. For instance, DeepSeek-R1
achieves an NDCG@10 of 48.86 in DR, which is a 12% improvement
over the baseline (43.50). Furthermore, the Valid Rate improves after
feature augmentation, indicating that the features validated by the
reward model are helping the LLM complete the recommendation
task more effectively.

(2) Long-CoT vs. Non-Long-CoT Models: For LLM-as-Rec,
we observe that models with long-CoT processes, such as o1-mini
and o03-mini, outperform their non-long-CoT counterparts (gpt-
40-mini). For instance, for DR on the Toys dataset, the NDCG@5
metric improves from 38.87 (for gpt-4o0-mini) to 39.25 (for o1-mini)
and 42.23 (for 03-mini). Similarly, gemini-2.0-flash-thinking-exp
shows an improvement over the non-long-CoT gemini-2.0-flash,
confirming that long-CoT reasoning provides a significant advan-
tage in feature generation. While DeepSeek-V3 performs slightly
worse than DeepSeek-R1 on the Instruments dataset, the latter
outperforms DeepSeek-V3 on the larger Toys dataset. One notable
exception is QwQ, which underperforms relative to the Qwenz2.5-
Instruct series. We speculate that this is due to QwQ generating
fewer features, a point we will further explore in Section 5. For tra-
ditional recommendation models, distilled versions of DeepSeek-R1
and gemini-2.0-flash-thinking-exp also lead to strong performance,
suggesting the potential of integrating long-CoT reasoning into
traditional frameworks.

(3) Transfer of Advanced Reasoning to Recommendation:
Models like DeepSeek-R1, gemini-2.0-flash-thinking-exp, and 03-
mini stand out for their superior performance, with the first two
excelling on different datasets for LLM-as-Rec. These models also
perform strongly in math and coding topics of Chatbot Arena [11],
indicating that the advanced inference scaling techniques driv-
ing their success in reasoning-intensive tasks also benefit
recommendation. We believe this transfer stems from the out-of-
distribution (OOD) nature of recommendation data: due to highly
personalized user behavior, recommendation data is generally not
used during the pre-training of most LLMs [17, 36]. As suggested
by [75], training LLMs on long-CoT data can improve generaliza-
tion to OOD tasks, enabling them to reason more effectively about
nuanced user preferences.

In summary, we demonstrate that augmenting recommendation
systems with LLM-generated features significantly improves perfor-
mance, especially when models use long-CoT reasoning. Moreover,
policy models that excel in math and coding tasks tend to generate
superior features for capturing user preferences. This convergence
underscores the potential of inference scaling as a general strategy
for enhancing recommendation systems.

3.2 Effect of Different Search Strategies

In math and coding tasks, models often cannot arrive at a final
solution in a single step. Instead, they often rely on search algo-
rithms—either exploring multiple solution paths in parallel [5] or
iteratively refining a candidate solution [40]. Naturally, one might

Uncovering Inference Computation Scaling for Feature Augmentation in Recommendation Systems

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Table 2: Performance of LLM-as-Rec with features from various policy models. The baseline performance, labeled as “w/o
features”, reflects results without the inclusion of additional features. Bold denotes the highest scores across all policy models.
For brevity, ‘%’ is omitted from scores in subsequent tables and figures.

Dataset Policy Model DR cr g
valid Rate NDCG@5 HIT@5 NDCG@10 HIT@10 Valid Rate NDCG@5 HIT@5 NDCG@10 HIT@10 HIT

w/o features 94.80 37.21 51.01 43.50 70.67 99.33 35.46 49.69 42.06 70.28 24.46
[Qwen2.5-7B-Instruct 97.28 40.75 56.72 46.84 75.54 99.67 39.26 54.88 45.73 74.98 27.13
[Qwen2.5-14B-Instruct 97.38 39.83 55.24 46.20 74.98 99.52 38.22 53.47 44.90 74.22 26.23
[Qwen2.5-32B-Instruct 96.95 40.39 54.94 46.95 75.41 99.71 39.46 55.14 45.91 75.23 26.75
& DeepSeek-R1-7B 96.90 37.39 52.36 44.15 73.33 99.52 36.24 51.37 43.09 72.69 24.27
@ DeepSeek-R1-14B 95.90 38.14 52.56 44.71 73.05 99.57 35.81 49.86 43.12 72.65 25.08
@ DeepSeek-R1-32B 97.38 38.79 53.97 45.58 75.02 100.00 37.11 52.84 43.85 73.63 25.56
Toys %% QwQ-32B-Preview 96.09 38.16 53.10 44.37 72.41 99.71 35.32 50.65 42.22 72.12 24.75
© gpt-40-mini 97.14 38.87 52.97 45.64 74.13 99.71 38.16 52.89 44.78 73.46 26.51
® 01-mini 97.19 39.25 53.29 46.13 74.68 99.81 38.82 53.94 45.44 74.58 25.99
© 03-mini 97.23 42.23 56.89 48.11 75.28 99.86 40.69 55.97 47.25 76.41 29.04
@ DeepSeek-V3 97.28 41.63 56.47 48.15 76.72 99.90 40.98 55.80 47.06 74.65 28.42
@ DeepSeek-R1 97.23 42.56 56.74 48.86 76.31 99.62 42.35 58.83 47.66 75.30 29.33
G gemini-2.0-flash 97.38 40.89 55.63 47.12 75.07 99.76 40.76 56.64 46.82 75.48 27.61
G gemini-2.0-flash-thinking-exp 97.42 41.13 55.07 47.35 74.40 99.76 41.24 57.31 47.20 75.72 28.85
w/o features 95.33 40.77 56.13 46.85 75.23 99.75 36.01 53.14 43.23 75.59 23.99
%% Qwen2.5-7B-Instruct 97.42 44.10 58.33 50.24 77.53 99.63 39.73 54.44 46.66 75.80 27.68
%% Qwen2.5-14B-Instruct 98.28 39.28 53.44 46.67 76.47 99.63 35.87 52.10 44.07 77.53 27.68
%% Qwen2.5-32B-Instruct 97.79 43.28 58.11 49.92 78.62 99.88 39.95 57.27 47.13 79.56 27.68
& DeepSeek-R1-7B 96.56 41.88 57.96 48.37 77.96 99.88 36.80 53.94 44.45 77.83 25.22
@ DeepSeek-R1-14B 96.43 40.31 55.23 47.75 78.44 99.63 35.55 52.72 43.01 76.05 24.48
@ DeepSeek-R1-32B 97.66 40.13 55.04 46.99 76.20 99.63 38.66 55.93 45.23 76.30 25.46
Instruments 7 QwQ-32B-Preview 95.69 43.20 59.25 49.50 78.66 99.63 39.22 55.80 46.64 78.77 25.22
© gpt-40-mini 97.79 41.86 57.48 48.76 78.99 100.00 40.79 58.43 47.34 78.84 29.77
© 01-mini 98.15 46.21 62.66 51.65 79.57 99.88 43.04 61.08 48.81 79.06 30.01
© 03-mini 97.54 45.60 59.90 52.12 80.08 99.88 43.20 59.85 49.31 78.82 30.01
@ DeepSeek-V3 97.91 48.10 62.69 53.84 80.65 99.63 44.59 62.10 51.04 82.10 32.10
@ DeepSeek-R1 98.52 47.82 62.05 53.36 79.28 99.63 44.29 61.73 50.60 81.48 30.75
G gemini-2.0-flash 97.54 48.98 64.56 55.05 83.23 99.88 45.65 64.53 51.54 82.76 31.49
G gemini-2.0-flash-thinking-exp 98.77 49.96 65.63 55.50 82.57 100.00 47.41 64.82 53.54 83.76 31.24

ask whether these same algorithms are equally beneficial for feature
generation in a recommendation context, where the model’s goal is
to uncover user preferences. In this study, we evaluate four search
strategies for generating features: CoT, Best-of-N, Beam Search,
and MCTS.

To balance effectiveness and computational efficiency, we eval-
uate these strategies on the smaller Instruments dataset, using
Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct as our policy mod-
els. The reward model evaluates each strategy by counting the
number of valid features it produces—features that clearly distin-
guish between items a user likes and dislikes. The final output is
selected based on the highest number of valid features.

As shown in Table 4, all strategies outperform the baseline CoT
approach. For example, with Qwen2.5-14B-Instruct as the policy
model, CoT alone achieves an NDCG@5 of 39.28. In comparison,
advanced search algorithms achieve significantly better results:
Best-of-N (43.11), Beam Search (41.09), and MCTS (40.64). When
Qwen2.5-7B-Instruct is used in the ICL task, Beam Search slightly
outperforms Best-of-N. However, as the policy model size increases
(from 7B to 14B), Best-of-N maintains its advantage over step-level
methods like Beam Search and MCTS. Overall, Best-of-N shows
the largest performance gains especially when the policy model is
sufficiently large, likely due to its ability to select the best features
from multiple generated outputs.

These findings suggest that while step-level strategies like Beam
Search and MCTS are effective in domains where precise incremen-
tal steps are crucial (such as solving mathematical proofs [70] or

playing games like Go [54]), Best-of-N is more effective in identify-
ing the most relevant features for recommendation tasks. We will
further explore the reasons behind this trend in Section 5.2.

4 Advantages of Inference Scaling for Feature
Augmentation(RQ2)

In the previous section, we showed that features generated through

inference scaling improve recommendation performance. However,

it’s still unclear why this improvement happens—specifically, what

advantages long-CoT LLMs offer over those non-long-CoT models.

4.1 Increased Number of Unique Features

To investigate this aspect, we compare the features generated by
gpt-4o-mini and ol-mini in subsection 3.1. For each model, we col-
lect all valid features generated across users, then measure both
the total and the number of unique features after removing dupli-
cates through clustering. In particular, we use the bge-m3 [9] to
embed features and DBSCAN [18] to cluster them. Since users can
exhibit diverse decision factors [25], deeper and more personalized
reasoning allows the LLM to uncover the unique preferences and
decision-making factors of each user. As the model performs more
in-depth analysis of these varied factors, it is likely to generate
a greater number of distinct features, each reflecting different as-
pects of the user’s preferences. Therefore, the number of unique
features can serve as a valuable metric for assessing the extent to
which the model has captured the complexity and individuality of

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Liu et al.

Table 3: Performance of Traditional Recommenders with features from various policy models.

Dataset Policy Model SASRec LRURec
NDCG@5 HIT@5 NDCG@10 HIT@10 NDCG@5 HIT@5 NDCG@10 HIT@10
w/o features 4.74 7.28 6.38 12.41 4.72 7.48 6.47 12.97
7 Qwen2.5-7B-Instruct 5.54 8.50 7.25 13.83 5.38 8.34 7.34 14.41
5 Qwen2.5-14B-Instruct 5.53 8.42 7.19 13.60 5.47 8.55 7.44 14.66
7 Qwen2.5-32B-Instruct 5.55 8.60 7.19 13.70 5.49 8.55 7.41 14.54
@ DeepSeek-R1-7B 5.40 8.34 7.11 13.68 5.48 8.52 7.42 14.54
@ DeepSeek-R1-14B 5.46 8.29 7.17 13.63 5.47 8.47 7.39 14.46
& DeepSeek-R1-32B 5.59 8.47 7.34 13.91 5.57 8.57 7.46 14.46
Toys %7 QwQ-32B-Preview 5.53 8.42 7.21 13.63 5.39 8.50 7.41 14.77
® gpt-40-mini 5.43 8.47 7.11 13.68 5.54 8.42 7.48 14.44
® 01-mini 5.47 8.47 7.20 13.91 5.49 8.57 7.33 14.29
® 03-mini 5.43 8.27 7.25 13.93 5.44 8.42 7.36 14.41
@ DeepSeek-V3 5.35 8.17 7.11 13.63 5.53 8.52 7.45 14.49
& DeepSeek-R1 5.46 8.27 7.28 13.93 5.49 8.57 7.35 14.36
G gemini-2.0-flash 5.56 8.65 7.13 13.55 5.42 8.39 7.39 14.49
G gemini-2.0-flash-thinking-exp 5.57 8.55 7.27 13.88 5.43 8.45 7.38 14.51
w/o features 5.31 6.98 5.91 8.83 4.53 5.77 5.39 8.47
7 Qwen2.5-7B-Instruct 5.79 7.69 6.81 10.96 5.96 7.33 6.79 9.89
7 Qwen2.5-14B-Instruct 5.66 7.40 6.70 10.60 5.92 6.98 6.99 10.39
[Qwen2.5-32B-Instruct 5.72 7.62 6.72 10.75 6.03 7.40 6.80 9.82
& DeepSeek-R1-7B 6.25 8.33 7.20 11.32 5.82 7.19 6.68 9.89
& DeepSeek-R1-14B 5.96 8.19 6.88 11.03 5.94 7.19 6.82 9.89
@ DeepSeek-R1-32B 5.87 7.90 6.68 10.39 6.00 7.40 6.85 10.04
Instruments %% QwQ-32B-Preview 5.79 7.62 6.71 10.46 5.95 7.19 6.90 10.11
® gpt-40-mini 5.82 7.83 6.85 11.03 6.10 7.47 6.86 9.82
® o1-mini 5.72 7.47 6.64 10.32 5.82 7.12 6.70 9.82
® 03-mini 5.76 7.76 6.76 10.89 5.81 7.26 6.59 9.68
& DeepSeek-V3 6.08 8.19 6.78 10.39 5.91 7.12 6.82 9.96
@ DeepSeek-R1 5.73 7.76 6.45 9.96 5.77 7.33 6.52 9.75
G gemini-2.0-flash 5.86 7.83 6.78 10.75 6.04 7.33 6.93 10.11
G gemini-2.0-flash-thinking-exp 5.85 7.97 6.85 11.10 6.12 7.47 6.93 10.04
Table 4: Performance of LLM-as-Rec with features from various search strategies.
Policy Search DR ICL NIP
Model Strategy Valid Rate NDCG@5 HIT@5 NDCG@10 HIT@10 Valid Rate NDCG@5 HIT@5 NDCG@10 HIT@10 HIT
w/o features 95.33 40.77 56.13 46.85 75.23 99.75 36.01 53.14 43.23 7559 23.99
CoT 97.42 44.10 58.33 50.24 77.53 99.63 39.73 54.44 46.66 75.80 27.68
Qwen2.5-7B Best-of-N 97.54 44.91 60.66 51.22 80.20 99.75 39.70 56.23 46.64 77.68 28.04
-Instruct Beam Search 97.42 43.70 59.09 49.85 78.41 99.63 40.06 56.67 46.92 77.90 2620
MCTS 97.42 41.87 56.44 48.12 75.88 99.51 39.43 56.37 45.81 7627 26,57
CoT 98.28 39.28 53.44 46.67 76.47 99.63 35.87 52.10 44.07 77.53 27.68
Qwen2.5-14B Best-of-N 97.91 43.11 58.54 49.22 77.76 99.88 40.06 56.77 46.73 7734 27.68
-Instruct Beam Search 97.79 41.09 55.97 47.79 76.73 99.75 36.62 52.90 43.93 7559 2731
MCTS 97.79 40.64 54.72 48.17 77.99 99.51 37.99 54.39 44.95 76.14 2472

Table 5: Total and unique feature counts generated by two
policy models on different datasets.

Dataset Policy Model #Total features #Unique features
gpt-40-mini 25,536 4,037
T
oys o1-mini 31,822 4,482
Instruments gpt-40-mini 8,156 2,766
0l-mini 11,443 4,086

user decision-making. The results, presented in Table 5, show that

ol-mini generates more features overall and more unique features
than gpt-40-mini, indicating that extended CoT reasoning enables
a more comprehensive exploration of user preferences.

To further analyze the relationship between feature quantity and
recommendation performance, we use the larger Toys dataset to
minimize noise and yield robust insights. For each policy model, we
plot the number of unique valid features (log-scaled, base 10) against
DR performance. Results in Figure 1 indicate a positive correlation:
as the number of unique valid features increases, recommendation
performance improves. This finding suggests that the quantity of
unique valid features can be considered a reasonable indicator of the

Uncovering Inference Computation Scaling for Feature Augmentation in Recommendation Systems

ol-mini wins tie gpt-4o-mini wins

1

gpt-40
“mini 26.01% 70.94% 3.05%
as judge
1
ol-mini o o o
as judge 52.87% 32.18% 14.95%
1
claude 67.33% 18.07% 14.60%
as judge 33% 07% 60%
il
0% 20% 40 % 60 % 80 % 100 %

Figure 3: Win-Tie-Lose Comparisons on specificity of fea-
tures from gpt-40-mini and o1-mini.

depth of personalized reasoning, and can serve as a useful predictor
of recommendation performance.

4.2 More Detailed and Specific Descriptions

Beyond generating more features, we find that o1-mini also pro-
duces features that are more specific and clearly described compared
to gpt-4o-mini. To evaluate this, we use an LLM-as-a-judge [88]
approach. We present pairs of feature descriptions—one from gpt-
40-mini and one from o1l-mini—to three judge models: gpt-40-mini,
ol-mini, and claude-3-5-sonnet [2]. To mitigate position bias [53],
each feature pair is evaluated twice, with the positions of the gen-
erated features swapped between the two rounds. We consider a
feature description superior only when both evaluations are con-
sistent; otherwise, the result is recorded as a tie.

Figure 3 shows that all judges unanimously rate o1-mini’s fea-
tures as more specific and better described than gpt-4o-mini. No-
tably, even though LLMs often exhibit self-enhancement bias [6, 15,
88]—where they tend to favor their own generated content—gpt-4o-
mini still rated o1-mini’s descriptions more favorably. This further
supports that o1-mini produces more detailed and precise features.

In summary, the key benefits of inference scaling in feature gen-
eration are: (1) it generates more features, and (2) these generated
features are more specific and detailed. These advantages suggest
that longer reasoning chains enable models to explore a richer space
of possible features, providing more meaningful insights into user
preferences for recommendation tasks.

5 Factors Influencing the Number of Generated
Features (RQ3)

In previous sections, we showed that feature quantity plays an
important role in recommendation performance. Here, we examine
what factors influence this quantity—focusing on the impact of
model choice and search strategy.

5.1 Model Selection

Following the procedure in Section 4, we collect all features gener-
ated by each policy model across all users. The reward model then
identifies which features effectively distinguish users’ liked items
from disliked ones. After clustering and removing duplicates, we
compare the number of unique features from each policy model.

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Figure 4 illustrates the growth of unique features as a function
of the total number of valid features on the Toys dataset. The hor-
izontal axis represents the total number of valid, distinguishable
features generated across all users, while the vertical axis indicates
the number of unique features—serving as a proxy for the depth of
personalization. Three key observations emerge:

(1) Model Families. The DeepSeek and Gemini families attain
the top points on the vertical and horizontal axes, respectively.
DeepSeek-R1 generates the highest number of unique valid features,
whereas gemini-2.0-flash-thinking-exp produces a large number
of features overall but fewer truly unique ones—indicating high
quantity but somewhat weaker personalization. Within the GPT
family, 03-mini stands out for strong uniqueness, second only to
DeepSeek-R1. By contrast, the Qwen series produces fewer features
in total (under 20K) and fewer unique features (under 5K).

(2) Long-CoT. When comparing models within the same fam-
ily, those incorporating extended reasoning—via SFT [28], RL [41],
or other advanced training techniques [23]—produce significantly
more unique features than their base counterparts. For example,
in Figure 4(a), DeepSeek-R1 produces over three times the num-
ber of unique features compared to DeepSeek-V3, while 03-mini
outperforms gpt-40-mini by over 50%. Similarly, gemini-2.0-flash-
thinking-exp surpasses gemini-2.0-flash, and the distilled versions
of DeepSeek-R1 for Qwen exhibit steeper slopes than standard
Qwen models of the same scale (Figure 4(b)). This suggests that ex-
plicitly producing a richer chain-of-thought (rather than keeping it
implicit in model parameters) helps capture more granular decision
factors, facilitating the discovery of a broader range of user-specific
features. One exception is QwQ, which generates fewer features
than Qwen2.5-7B-Instruct, aligning with the results in Section 3.1
that QwQ underperforms Qwen in downstream recommendations.

(3) Model Size. Overall, larger models tend to generate more
unique features. For example, DeepSeek-R1 (671B) generates over
17,500 unique features, whereas its distilled 7B, 14B, and 32B ver-
sions produce only a few thousand. However, size is not always
a guarantee of better personalization. Within the 7B-32B range,
the 7B variants often surpass their 14B and 32B counterparts in
personalization capacity across both Qwen and distilled DeepSeek
models. Notably, smaller models that benefit from long-CoT train-
ing can even outperform larger models without extended reasoning.
For instance, DeepSeek-V3 (671B) generates around 5K unique fea-
tures, whereas DeepSeek-R1-7B produces over 7K—highlighting
the substantial role of long chain-of-thought processes.

In summary, long-CoT training and model family are influential
factors in feature generation. In highly personalized domains such
as recommendation, where user decision factors vary widely, a
detailed, case-by-case approach that leverages explicit and extended
reasoning proves particularly advantageous.

5.2 Search Strategies

We next investigate how search strategies affect the quantity of gen-
erated features. Figure 5 presents results on the Instruments dataset.
All strategies exhibit a roughly linear relationship between the to-
tal and unique feature quantity. Notably, Best-of-N consistently
produces the highest total and unique feature counts, while Beam

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

DeepSeek-V3
== DeepSeek-R1
QwQ-32B-Preview

— = Qwen2.5-32B-Instruct gpt-do-mini
gemini-2.0-flash ol-mini
03-mini

10000

#Unique features
\

5000

0 5000 10000 15000 20000 25000 30000 35000 40000
#Total features

(a) Comparison across model families.

Liu et al.
DeepSeek-R1-7B DeepSeek-R1-32B
— = Qwen2.5-7B-Instruct — = Qwen2.5-32B-Instruct
DeepSeck-R1-14B QwQ-32B-Preview
6000 o = Qwen25-14B-Imstruct e
N '
g o
= -
< ,’
<2 4000 v
2 4
o 74
: A
3 -
2000 # T
’,/ ’.//
-
/ e
/ _ﬂ"‘"
0
0 5000 10000 15000 20000 25000

#Total features

(b) Model-size comparison across DeepSeek and Qwen.

Figure 4: Number of unique features generated by each policy model versus the total number of features on the Toys dataset.

CoT CoT

6000 -=-- Best-of-N 4000 777 BestofN
8 Beam Search g Beam Search -
£ ---- MCTS £ 3000 ~ MCTS
3 4000 » 3
° # ®
El & 5
=3 o 52000
= 2000 5 S
* "‘ 1000 -

o
SN

0 5000 10000
#Total features

5000 10000
#Total features

(b) Using Qwen2.5-14B-Instruct as the
policy model

(a) Using Qwen2.5-7B-Instruct as the
policy model

Figure 5: Comparison of different search strategies on the
Instruments dataset.

Search and MCTS generate fewer. This aligns with their recommen-
dation performance in Section 3.2, where Best-of-N outperforms
the other search strategies.

The underlying reason lies in the difference between step-level
and solution-level optimization. In tasks like math [70] or games like
Go [54], each intermediate step must be correct to avoid disrupting
the final outcome; local missteps can ruin the entire sequence,
making step-level search essential for achieving a globally optimal
result. In contrast, user-feature generation in recommendation is
less tightly coupled: each newly proposed feature—whether relevant
or not—does not necessarily affect subsequent features. Even if
some features are ineffective, the model can still generate valid and
valuable features afterward. For instance, generating features such
as appearance, price, or durability are relatively independent, so
discovering useful features after ineffective ones can still improve
the overall result. Therefore, step-level search provides limited
benefits in recommendation tasks, whereas solution-level strategies
like Best-of-N are more effective in identifying the most promising
solution without requiring each incremental step to be optimal.

6 Related Work

LLMs for Rec. LLMs can enhance recommendation systems by pro-
viding contextual understanding and reasoning abilities [27]. Recent
work on LLM-based augmentation in recommendation generally
follows two main directions. The first approach leverages LLMs for
text embedding, integrating user and item attributes into unified

representations [26, 33, 52, 76, 84]. The second approach focuses
on generating additional information for recommendations. For
instance, KAR [68] instructs LLMs to produce item descriptions and
user preference rationales, while LLM-ESR [39] summarizes user
preferences. RLMRec [49] describes both user and item attributes,
incorporating collaborative information, and LLM-CF [56] uses a
chain-of-thought to represent user decisions. RecSAVER [62] gen-
erates post hoc rationales which could be seen as interaction-level
features and distills them into a smaller model for rating predic-
tion. ReasoningRec [4] and EXP3RT [32] additionally generate user
and item profiles, and reason whether the user will like/dislike the
item before making recommendations. Reason4Rec [20] breaks the
reasoning process into multiple steps, training each step indepen-
dently to improve performance. However, most of these methods
rely on relatively fast inference, frequently resulting in incomplete
coverage and insufficient specificity [29].

Inference Computation Scaling. Inference scaling involves
allocating more computational resources to the inference stage,
allowing LLMs to reason based on additional prior steps. This shift
from System-1 (fast thinking) to System-2 (slow thinking) reason-
ing enhances their ability to process complex tasks [10, 29]. The
relationship between performance and inference time was first ex-
amined by Snell et al. [55], and recent studies [8, 48, 51, 73, 82] have
demonstrated promising results in math and coding tasks. More-
over, Yue et al. [78] investigates inference scaling for Retrieval Aug-
mented Generation, and Sun et al. [57] employs test-time scaling to
address challenges in complex multi-step reasoning. However, none
of these works have investigated whether inference scaling can help
address the incomplete coverage problem in recommendation tasks,
and we aim to explore how this technique can improve personalized
recommendation systems through feature augmentation.

7 Conclusion

In this paper, we demonstrate that inference scaling can signifi-
cantly enhance feature augmentation for recommendation systems.
Our experiments show that long-CoT models, compared to tra-
ditional fast inference methods, generate more detailed and spe-
cific features that better capture user decision factors, resulting
in markedly improved recommendation performance. In contrast

Uncovering Inference Computation Scaling for Feature Augmentation in Recommendation Systems

Direct Recommendation Prompt for LLMs

A user has interacted with the following items:
[Item Title 1], [Item Description 1], [User Rating 1].
[Item Title 2], [Item Description 2], [User Rating 2].

Here is the summary of the preferences of the user:
{Features 7, generated by LLMs}

Based on the history, please rank the following 20 candi-
dates in order of priority from highest to lowest:
[Candidate Title 1], [Candidate Description 1].
[Candidate Title 2], [Candidate Description 2].

Output format: a python list.

Figure 6: The prompt of LLM direct recommendation. Bold
text represents portions removed when features from LLMs
are not included.

to faster inference methods, long-CoT reasoning overcomes chal-
lenges like incomplete feature coverage and insufficient specificity.
Additionally, we observe that the quantity and specificity of fea-
tures are closely linked to the accuracy and effectiveness of the
recommendations. Overall, our findings highlight the potential of
inference scaling to improve user preference modeling and person-
alization in recommendation systems, paving the way for future
research on its broader application across personalized tasks.

A Appendix
A.1 Search Strategies

In this section, we introduce the search algorithms in detail:

(a) CoT. LLM explicitly outputs its intermediate reasoning steps.
This has been the default approach in our experiments.

(b) Best-of-N [12]. The policy model generates N complete out-
puts for each user. Each output includes a set of proposed features,
which are evaluated by the reward model. A feature is marked as
valid if it effectively distinguishes between items the user liked
and disliked. The final output is chosen as the one with the highest
number of valid features.

(c) Beam Search [69]. The policy model first produces N partial
outputs (beams), each ending at the first occurrence of \n\n—which
we treat as a step. The reward model evaluates each beam based
on the number of valid features and keeps the top N/M beams.
Each of these retained beams is then expanded by generating M
new branches, maintaining a total of N beams at each stage. This
process repeats until complete outputs are generated.

(d) MCTS [7]. This lookahead method builds a search tree from
the initial prompt (root) to a complete feature set (leaf). In each
round, it performs four phases: (1) Selection: Traverse the tree
from the root to an unexplored node with the highest UCB score.
Each node represents a partial output that ends with \n\n.(2) Ex-
pansion: Expand the selected node by generating the next step in
the output—i.e., continue the output until the next \n\n is reached.
(3) Evaluation (Rollout): From the expanded node, simulate a full
output and use the reward model to assess its quality. (4) Back-
propagation: Propagate the estimated reward back through the
tree to update earlier nodes and inform future selections.

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

CoT and Best-of-N operate at the solution level, selecting
among multiple fully generated outputs. In contrast, beam search
and MCTS operate at the step level, intervening on the policy
model’s partial outputs as they unfold [79].

References

[1] Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. 2023. LIm based generation
of item-description for recommendation system. In Proceedings of the 17th ACM
Conference on Recommender Systems. 1204-1207.

[2] Anthropic. 2024. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-
5-sonnet

[3] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A
generic coordinate descent framework for learning from implicit feedback. In
Proceedings of the 26th international conference on world wide web. 1341-1350.

[4] Millennium Bismay, Xiangjue Dong, and James Caverlee. 2024. ReasoningRec:
Bridging Personalized Recommendations and Human-Interpretable Explanations
through LLM Reasoning. arXiv preprint arXiv:2410.23180 (2024).

[5] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christo-
pher Ré, and Azalia Mirhoseini. 2024. Large language monkeys: Scaling inference
compute with repeated sampling. arXiv preprint arXiv:2407.21787 (2024).

[6] Jonathon D Brown. 1986. Evaluations of self and others: Self-enhancement biases
in social judgments. Social cognition 4, 4 (1986), 353-376.

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and Al in games 4, 1 (2012), 1-43.

[8] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. 2024. AlphaMath Almost
Zero: process Supervision without process. arXiv preprint arXiv:2405.03553 (2024).

[9] Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu.

2024. M3-Embedding: Multi-Linguality, Multi-Functionality, Multi-Granularity

Text Embeddings Through Self-Knowledge Distillation. In Findings of the Associ-

ation for Computational Linguistics ACL 2024. 2318-2335.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang,

Mengkang Hu, Yuhang Zhou, Te Gao, and Wangxiang Che. 2025. Towards

reasoning era: A survey of long chain-of-thought for reasoning large language

models. arXiv preprint arXiv:2503.09567 (2025).

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,

Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E

Gonzalez, et al. 2024. Chatbot arena: An open platform for evaluating llms by

human preference. arXiv preprint arXiv:2403.04132 (2024).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,

Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,

et al. 2021. Training verifiers to solve math word problems. arXiv preprint

arXiv:2110.14168 (2021).

Sunhao Dai, Changle Qu, Sirui Chen, Xiao Zhang, and Jun Xu. 2024. Recode:

Modeling repeat consumption with neural ode. In Proceedings of the 47th In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval. 2599-2603.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongx-

iang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering chatgpt’s capabilities in

recommender systems. In Proceedings of the 17th ACM Conference on Recom-

mender Systems. 1126-1132.

Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, and Jun Xu.

2024. Bias and unfairness in information retrieval systems: New challenges in

the llm era. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining. 6437-6447.

Google Deepmind. 2024. Introducing Gemini 2.0: our new Al model for the

agentic era. https://blog.google/technology/google-deepmind/google- gemini-

ai-update-december-2024/

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad

Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,

et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise. In

Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining. 226-231.

Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. 2020. Deep learning

for sequential recommendation: Algorithms, influential factors, and evaluations.

ACM Transactions on Information Systems (TOIS) (2020), 1-42.

[20] Yi Fang, Wenjie Wang, Yang Zhang, Fengbin Zhu, Qifan Wang, Fuli Feng, and Xi-

angnan He. 2025. Large Language Models for Recommendation with Deliberative

User Preference Alignment. arXiv preprint arXiv:2502.02061 (2025).

Shijie Geng, Shuchang Liu, Zuohui Fu, Yinggiang Ge, and Yongfeng Zhang. 2022.

Recommendation as language processing (rlp): A unified pretrain, personalized

prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on

[10

[11

[12

(13

(14

=
&

[16

(17

[18

=
L

o
=

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

Recommender Systems. 299-315.

[22] Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long
sequences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021).

[23] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[24] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173-182.

[25] Xinyue He, Qi Liu, and Sunho Jung. 2024. The impact of recommendation system
on user satisfaction: A moderated mediation approach. Journal of Theoretical
and Applied Electronic Commerce Research 19, 1 (2024), 448-466.

[26] Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley.
2024. Bridging language and items for retrieval and recommendation. arXiv
preprint arXiv:2403.03952 (2024).

[27] Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large
language models: A survey. arXiv preprint arXiv:2212.10403 (2022).

[28] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern,
Shijie Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. 2024. O1 Replication
Journey-Part 2: Surpassing O1-preview through Simple Distillation, Big Progress
or Bitter Lesson? arXiv preprint arXiv:2411.16489 (2024).

[29] Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Jia Xu, Linjian Mo, and Min Zhang. 2025.
Test-time Computing: from System-1 Thinking to System-2 Thinking. arXiv
preprint arXiv:2501.02497 (2025).

[30] Daniel Kahneman. 2011. Thinking, fast and slow. Farrar, Straus and Giroux
(2011).

[31] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). 197-206.

[32] Jieyong Kim, Hyunseo Kim, Hyunjin Cho, SeongKu Kang, Buru Chang, Jiny-
oung Yeo, and Dongha Lee. 2024. Review-driven Personalized Preference Rea-
soning with Large Language Models for Recommendation. arXiv preprint
arXiv:2408.06276 (2024).

[33] Dong-Ho Lee, Adam Kraft, Long Jin, Nikhil Mehta, Taibai Xu, Lichan Hong,
Ed H Chi, and Xinyang Yi. 2024. STAR: A Simple Training-free Approach for
Recommendations using Large Language Models. arXiv preprint arXiv:2410.16458
(2024).

[34] Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang,

and Xiangnan He. 2024. Llara: Large language-recommendation assistant. In

Proceedings of the 47th International ACM SIGIR Conference on Research and

Development in Information Retrieval. 1785-1795.

Zijie Lin, Yang Zhang, Xiaoyan Zhao, Fengbin Zhu, Fuli Feng, and Tat-Seng

Chua. 2025. IGD: Token Decisiveness Modeling via Information Gain in LLMs

for Personalized Recommendation. arXiv preprint arXiv:2506.13229 (2025).

[36] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chenggqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437 (2024).

[37] Chang Liu, Yimeng Bai, Xiaoyan Zhao, Yang Zhang, Fuli Feng, and Wenge Rong.
2025. DiscRec: Disentangled Semantic-Collaborative Modeling for Generative
Recommendation. arXiv preprint arXiv:2506.15576 (2025).

[38] Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang.
2023. Is chatgpt a good recommender? a preliminary study. arXiv preprint
arXiv:2304.10149 (2023).

[39] Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng Tian, Yefeng Zheng,
and Xiangyu Zhao. 2024. Llm-esr: Large language models enhancement for
long-tailed sequential recommendation. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

[40] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural
Information Processing Systems 36 (2024).

[41] Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru
Tang, Jiapeng Wang, Xiaoxue Cheng, Huatong Song, et al. 2024. Imitate, explore,
and self-improve: A reproduction report on slow-thinking reasoning systems.
arXiv preprint arXiv:2412.09413 (2024).

[42] Jianmo N1, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In Proceedings of the

2019 conference on empirical methods in natural language processing and the 9th

international joint conference on natural language processing (EMNLP-IJCNLP).

188-197.

OpenAlL 2024. GPT-40 mini: advancing cost-efficient intelligence. https://openai.

com/index/gpt-40-mini-advancing- cost-efficient-intelligence/

[44] OpenAl 2024. Learning to Reason with LLMs. https://openai.com/index/
learning-to-reason-with-1lms/

)
S

S
&

[45] OpenAl 2024. OpenAl o1 System Card. https://cdn.openai.com/o01-system-card-
20241205.pdf
[46] OpenAl 2025. OpenAl 03-mini. https://openai.com/index/openai-o03-mini/

[47

[48

[49

‘o
=

[51

[52

[53

[54

[55

[56

[57

(58]

o
20,

[60

[61]

[62

o
A

(64

(65

[66

[67

(68

[69

Liu et al.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre,
Razvan Pascanu, and Soham De. 2023. Resurrecting recurrent neural networks for
long sequences. In International Conference on Machine Learning. 26670—-26698.
Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang.
2024. Mutual reasoning makes smaller llms stronger problem-solvers. arXiv
preprint arXiv:2408.06195 (2024).

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei
Yin, and Chao Huang. 2024. Representation learning with large language models
for recommendation. In Proceedings of the ACM on Web Conference 2024. 3464—
3475.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452-461.
Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei
Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath: Pushing
the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300 (2024).

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, and Tat-Seng Chua.
2024. Language Representations Can be What Recommenders Need: Findings
and Potentials. arXiv preprint arXiv:2407.05441 (2024).

Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and Soroush Vosoughi. 2024.
Judging the judges: A systematic investigation of position bias in pairwise com-
parative assessments by llms. arXiv preprint arXiv:2406.07791 (2024).

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484-489.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-
time compute optimally can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314 (2024).

Zhongxiang Sun, Zihua Si, Xiaoxue Zang, Kai Zheng, Yang Song, Xiao Zhang,
and Jun Xu. 2024. Large language models enhanced collaborative filtering. In Pro-
ceedings of the 33rd ACM International Conference on Information and Knowledge
Management. 2178-2188.

Zhongxiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue Zang, Kai Zheng, Jun Xu,
Xiao Zhang, Song Yang, and Han Li. 2025. ReARTeR: Retrieval-Augmented
Reasoning with Trustworthy Process Rewarding. arXiv preprint arXiv:2501.07861
(2025).

Pawel Swietojanski, Jinyu Li, and Steve Renals. 2016. Learning hidden unit con-
tributions for unsupervised acoustic model adaptation. IEEE/ACM Transactions
on Audio, Speech, and Language Processing (2016).

Qiaoyu Tan, Jianwei Zhang, Jiangchao Yao, Ninghao Liu, Jingren Zhou, Hongxia
Yang, and Xia Hu. 2021. Sparse-interest network for sequential recommendation.
In Proceedings of the 14th ACM international conference on web search and data
mining. 598-606.

Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, and
Yuning Jiang. 2025. Think Before Recommend: Unleashing the Latent Reasoning
Power for Sequential Recommendation. arXiv preprint arXiv:2503.22675 (2025).
Qwen Team. 2024. QwQ: Reflect Deeply on the Boundaries of the Unknown.
https://qwenlm.github.io/blog/qwq-32b-preview/

Alicia Y Tsai, Adam Kraft, Long Jin, Chenwei Cai, Anahita Hosseini, Taibai
Xu, Zemin Zhang, Lichan Hong, Ed H Chi, and Xinyang Yi. 2024. Leveraging
LLM Reasoning Enhances Personalized Recommender Systems. arXiv preprint
arXiv:2408.00802 (2024).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems. 6000-6010.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqgin
Gong, Yan Song, Lei Chen, Lionel M Ni, et al. 2024. Openr: An open source
framework for advanced reasoning with large language models. arXiv preprint
arXiv:2410.09671 (2024).

Lei Wang and Ee-Peng Lim. 2023. Zero-shot next-item recommendation using
large pretrained language models. arXiv preprint arXiv:2304.03153 (2023).

Yan Wang, Zhixuan Chu, Xin Ouyang, Simeng Wang, Hongyan Hao, Yue Shen,
Jinjie Gu, Sigiao Xue, James Y Zhang, Qing Cui, et al. 2023. Enhancing recom-
mender systems with large language model reasoning graphs. arXiv preprint
arXiv:2308.10835 (2023).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824-24837.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo
Chen, Ruiming Tang, Weinan Zhang, and Yong Yu. 2024. Towards open-world
recommendation with knowledge augmentation from large language models. In
Proceedings of the 18th ACM Conference on Recommender Systems. 12—22.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian
He, and Michael Xie. 2023. Self-evaluation guided beam search for reasoning.

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://cdn.openai.com/o1-system-card-20241205.pdf
https://cdn.openai.com/o1-system-card-20241205.pdf
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwq-32b-preview/

Uncovering Inference Computation Scaling for Feature Augmentation in Recommendation Systems

[70]

[71]

[72

[73]

[74]

[75

[76]

[77]

[78]

[79]

Advances in Neural Information Processing Systems 36 (2023), 41618-41650.
Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang,
Bo Liu, Liyue Zhang, Xuan Lu, Qiushi Du, et al. 2024. Deepseek-prover-v1. 5:
Harnessing proof assistant feedback for reinforcement learning and monte-carlo
tree search. arXiv preprint arXiv:2408.08152 (2024).

Wujiang Xu, Zujie Liang, Jiaojiao Han, Xuying Ning, Wenfang Lin, Linxun Chen,
Feng Wei, and Yongfeng Zhang. 2024. Slmrec: empowering small language models
for sequential recommendation. arXiv e-prints (2024), arXiv-2405.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. 2024. Qwen2.5
technical report. arXiv preprint arXiv:2412.15115 (2024).

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li,
Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen2. 5-
math technical report: Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122 (2024).

Yuhao Yang, Chao Huang, Lianghao Xia, Chunzhen Huang, Da Luo, and Kangyi
Lin. 2023. Debiased contrastive learning for sequential recommendation. In
Proceedings of the ACM web conference 2023. 1063-1073.

Xinhao Yao, Ruifeng Ren, Yun Liao, and Yong Liu. 2025. Unveiling the Mech-
anisms of Explicit CoT Training: How Chain-of-Thought Enhances Reasoning
Generalization. arXiv preprint arXiv:2502.04667 (2025).

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu
Pan, and Yongxin Ni. 2023. Where to go next for recommender systems? id-
vs. modality-based recommender models revisited. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 2639-2649.

Zhenrui Yue, Yueqi Wang, Zhankui He, Huimin Zeng, Julian McAuley, and Dong
Wang. 2024. Linear recurrent units for sequential recommendation. In Proceedings
of the 17th ACM International Conference on Web Search and Data Mining. 930-
938.

Zhenrui Yue, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng,
Zhen Qin, Dong Wang, Xuanhui Wang, and Michael Bendersky. 2024. Infer-
ence scaling for long-context retrieval augmented generation. arXiv preprint
arXiv:2410.04343 (2024).

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Bo Wang, Shimin Li, Yunhua
Zhou, Qipeng Guo, Xuanjing Huang, and Xipeng Qiu. 2024. Scaling of search and
learning: A roadmap to reproduce o1 from reinforcement learning perspective.

[80

[81

(82

(84

(85

[86

(88

[89

]

RecSys ’25 Workshop, September 22-26, 2025, Prague, Czech Republic

arXiv preprint arXiv:2412.14135 (2024).

Jiaqgi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao,
Zhaojie Gong, Fangda Gu, Jiayuan He, Yinghai Lu, and Yu Shi. 2024. Actions
speak louder than words: trillion-parameter sequential transducers for generative
recommendations. In Proceedings of the 41st International Conference on Machine
Learning (ICML’24). 26 pages.

Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao,
Shen Li, Yuchen Hao, Yantao Yao, et al. 2024. Wukong: Towards a scaling law for
large-scale recommendation. arXiv preprint arXiv:2403.02545 (2024).

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang.
2024. Accessing gpt-4 level mathematical olympiad solutions via monte carlo
tree self-refine with llama-3 8b. arXiv preprint arXiv:2406.07394 (2024).

Gaowei Zhang, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji-
Rong Wen. 2024. Scaling law of large sequential recommendation models. In
Proceedings of the 18th ACM Conference on Recommender Systems. 444-453.
Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli Feng, and Xiangnan He.
2024. Text-like Encoding of Collaborative Information in Large Language Models
for Recommendation. arXiv preprint arXiv:2406.03210 (2024).

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong,
and Jitao Sang. 2024. ol-coder: an o1 replication for coding. arXiv preprint
arXiv:2412.00154 (2024).

Yang Zhang, Wenxin Xu, Xiaoyan Zhao, Wenjie Wang, Fuli Feng, Xiangnan
He, and Tat-Seng Chua. 2025. Reinforced Latent Reasoning for LLM-based
Recommendation. arXiv preprint arXiv:2505.19092 (2025).

Xiaoyan Zhao, Yang Deng, Wenjie Wang, Hong Cheng, Rui Zhang, See-Kiong
Ng, Tat-Seng Chua, et al. 2025. Exploring the Impact of Personality Traits
on Conversational Recommender Systems: A Simulation with Large Language
Models. arXiv preprint arXiv:2504.12313 (2025).

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024. Judging
llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems 36 (2024).

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning for se-
quential recommendation with mutual information maximization. In Proceedings
of the 29th ACM international conference on information & knowledge management.
1893-1902.

	Abstract
	1 Introduction
	2 Probing Inference Scaling for Recommendation Systems
	2.1 Task Formulation
	2.2 Inference Scaling Procedure
	2.3 Downstream Recommendation Tasks
	2.4 Experimental Setup

	3 Impact of Inference Scaling on Recommendation Performance (RQ1)
	3.1 Effect of Different Policy Model Features
	3.2 Effect of Different Search Strategies

	4 Advantages of Inference Scaling for Feature Augmentation(RQ2)
	4.1 Increased Number of Unique Features
	4.2 More Detailed and Specific Descriptions

	5 Factors Influencing the Number of Generated Features (RQ3)
	5.1 Model Selection
	5.2 Search Strategies

	6 Related Work
	7 Conclusion
	A Appendix
	A.1 Search Strategies

	References

