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Abstract

In recent years, social media users have spent significant amounts
of time on short-form video platforms. As a result, established
platforms in other domains, such as e-commerce, have begun in-
troducing short-form video content to engage users and increase
their time spent on the platform. The success of these experiences
is due not only to the content itself but also to a unique UI innova-
tion: instead of offering users a list of choices to click, platforms
actively recommend content for users to watch one at a time. This
creates new challenges for recommender systems, especially when
launching a new video experience. Beyond the limited interaction
data, immersive feed experiences introduce stronger position bias
due to the Ul and duration bias when optimizing for watch-time, as
models tend to favor shorter videos. These issues, together with the
feedback loop inherent in recommender systems, make it difficult to
build effective solutions. In this paper, we highlight the challenges
faced when introducing a new short-form video experience and
present our experience showing that, even with sufficient video
interaction data, it can be more beneficial to leverage a scalable
video retrieval system using a multimodal vision-language model,
guided by a Large Language Model for few-shot learning and eval-
uation, to overcome these challenges. This approach demonstrated
greater effectiveness compared to conventional supervised learn-
ing methods in online experiments conducted on our e-commerce
platform.
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« Information systems — Recommender systems.
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1 Introduction

Short-form video platforms have rapidly reshaped digital engage-
ment, with users now spending substantial time consuming im-
mersive, vertically-scrolled video feeds. This paradigm shift has
prompted established domains, including e-commerce, to experi-
ment with similar experiences in order to capture user attention
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and drive engagement. However, the success of these platforms is
not solely attributed to the content itself, but also to a distinctive
Ul innovation: rather than presenting users with a list of options,
the system actively curates and presents content one item at a time,
creating a highly engaging, lean-back experience.

This interaction model introduces new challenges for recom-
mender systems. Unlike traditional settings where users’ prefer-
ences are inferred from explicit choices among many options, im-
mersive feeds rely on implicit signals such as watch-time and scroll
behavior. The sequential, single-item presentation amplifies po-
sition bias [12], as users are more likely to engage with content
shown earlier in the feed. Moreover, optimizing for watch-time
can introduce a strong duration bias, with models tending to favor
shorter videos that are more easily completed [20, 21]. These biases
are further reinforced by feedback loops [4], making it difficult to
ensure fair and relevant recommendations [7], especially in the
early stages of a new product where interaction data is limited.

Traditional recommender models trained from scratch, such as
collaborative filtering and other supervised approaches [3, 5, 18],
are effective in mature platforms with plenty of representative data.
However, they often struggle when available data is limited or
exhibits strong biases, as is common in new product experiences.
Counterfactual learning and bias correction methods have been
proposed [9], but they require careful design and large-scale data,
which are often unavailable in new experiences. Mitigating such
biases is challenging [6], as existing methods often fail to remain
robust when data is sparse [17], can show high variance in their
results [15], or are affected by interleaving biases [16]. As a result,
there is a growing need for approaches that leverage the general-
ization capabilities of foundation models and can be tailored for
specific applications, such as launching a new short-form video
experience on an e-commerce platform.

In this work, we highlight the challenges encountered when
launching a new short-form video experience in e-commerce. Even
with access to video interaction data, conventional methods can be
influenced by duration and position biases, which may limit their
effectiveness. To address these issues, we present a scalable retrieval
system based on a multimodal vision-language model (CLIP [14])
that maps both user history and video content into a shared seman-
tic space. This approach leverages the generalization capabilities
of foundation models, enabling robust recommendations even in
cold-start scenarios and outperforming conventional supervised
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learning methods in our context. To personalize recommendations,
we apply few-shot learning to the CLIP model using interaction
data from the main e-commerce catalog, specifically from users’
Browse and Search activities, capturing nuanced user preferences.
The few-shot learning process is guided by a Large Language Model
(LLM) for label refinement. For evaluation, we utilize the expert
visual language model Qwen as an LVLM-as-a-judge. Our online
experiments demonstrated that this approach increased watch-time
completion rates by over 39%, while maintaining a balanced distri-
bution of video duration, popularity, and watch-time.
Our main contributions are:

e We discuss the unique position and duration biases in im-
mersive short-form video feeds, explaining their impact on
recommender system performance.

e We share practical lessons from launching a new immersive
video product, highlighting real-world challenges and the
limitations of standard approaches.

e We present a scalable multimodal retrieval method using
vision-language models and LLM-guided evaluation and few-
shot learning, which delivers improved personalization and
relevance.

2 Background

A recency-based solution is often the preferred initial method for
video feeds, as it requires minimal engineering effort and enables
rapid prototyping and launch. By surfacing the latest content, it
drives engagement and content discovery, particularly in dynamic
environments. This approach also minimizes the introduction of
biases and the impact of feedback loops, making it a strong, in-
terpretable baseline for evaluating more advanced personalized or
multimodal methods.

Once interaction data becomes available, personalization is typi-
cally introduced using a conventional two-tower architecture [5,
18], which has become standard for scalable candidate generation.
These models learn separate user and item embeddings for efficient
retrieval. More advanced user models could represent interaction
history as a graph of fashion interests, leveraging Siamese graph
neural networks [10]. Given the limitations of early video interac-
tion data, a pragmatic approach is to use non-trainable user em-
beddings from existing platform models, while training the video
tower from scratch on video interactions. Relevance is often defined
by videos achieving watch times above a 50% threshold, following
industry standards; however, this introduces a bias toward shorter
videos [20, 21]. Combined with position bias and feedback loops,
the resulting data can be challenging, especially in immersive feed
experiences where position bias is amplified [12]. Training typically
uses dot-product similarity with sigmoid activation, optimized via
binary cross-entropy loss, and evaluated using AUC and NDCG
metrics.

Other approaches include reinforcement learning for optimizing
retention and watch-time [2], real-time reranking [8], and systems
designed for explicit video feedback [11]. While these methods
increase modeling complexity or require more data to train user
representations, they do not necessarily resolve the challenges
posed by bias in immersive video feeds.
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Figure 1: Overview of the multimodal retrieval architecture.

3 Multimodal retrieval approach

Recent advances in multimodal vision-language models, such as
CLIP [14], enable robust retrieval by embedding both users and con-
tent into a shared semantic space. We leverage this capability with
a two-tower architecture to address cold-start and bias challenges
in short-form video recommendations for e-commerce.

The video tower computes embeddings by averaging CLIP rep-
resentations of uniformly sampled video frames, capturing visual
and semantic content. The user tower aggregates CLIP embeddings
of products from a user’s recent interaction history, weighted by
recency, to form a personalized profile. This design allows effective
matching between users and videos, even without direct user-video
interactions. The architecture is depicted in Figure 1.

A key advantage of this approach is its ability to generalize from
limited data, providing meaningful recommendations in cold-start
scenarios and being less susceptible to duration and position biases
present in conventional models.

Further, we utilize a proprietary, adapted version of CLIP within
our company, enhanced through few-shot learning on interaction
data from users’ Browse and Search activities. This enables us
to transfer knowledge from the main catalog’s interaction data
via standard discriminative loss modeling, allowing the model to
better approximate a relevance function for video recommendations.
Throughout this paper, all references to CLIP refer to our adapted
version.

For evaluation, we employ an expert visual language model
(Qwen) as an LVLM-as-a-judge, providing external relevance as-
sessments that complement traditional metrics.

3.1 Method

Let U be the set of users and V the set of creator videos. For each
user u € U, we have a time-ordered history of product interac-
tions Hy, = [(s1,t1),- - -, (Sn, tn)], where s; is a product and ¢; is the
timestamp. Our goal is to learn a scoring function f : U x V — R
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that predicts the relevance of a video v to a user u, producing a
ranked list of videos for each user. The scoring function is modeled
as the dot product between user and video embeddings in a shared
d-dimensional space derived from CLIP:

fw,0) =eje,,

where e, € R? and e, € R? are the user and video embeddings,
respectively. The video embedding e, is computed as the average
of CLIP embeddings from m uniformly sampled video frames:

1 m
€y, = ; ; ECLIP (framej) .

Video embeddings are pre-computed and indexed for efficient re-
trieval. A user’s embedding e,, is dynamically computed online as
a weighted average of the CLIP embeddings of products in their re-
cent interaction history. The CLIP product embeddings, Ecrip (sg),
are comprehensive, incorporating all textual metadata and images
associated with the product. To give more importance to recent
interactions, we apply an exponential decay weighting based on
the time of interaction:

Sl v Eerp (se)
Cu = ||
Djt Wi
where wi = exp (—A(tnow — tx)) for decay factor A. For new users,
a global embedding based on popular products is used.
This architecture enables scalable, personalized video retrieval,

with embeddings precomputed offline and user profiles computed
online for real-time recommendations.

5

4 Experiments

In this section, we detail our experience personalizing the immer-
sive short-form video feed on a large-scale e-commerce platform.
The feed, designed for inspiration and entertainment, allows users
to scroll through videos one at a time, similar to popular social
media platforms.

4.1 Experimental setup

We began with a recency-based video feed to establish a baseline
and collect initial user interaction data. This approach enabled rapid
prototyping and provided insights into user engagement with the
new experience. During this phase, we intentionally limited traffic
to the new feed, allowing us to iteratively collect observations and
learnings while minimizing potential risks to the broader user base.

VCG Conventional. For personalization, we first implemented
a two-tower architecture. User embeddings were reused from the
main e-commerce catalog model, trained on Browse and Search
interactions, while the video tower was trained from scratch on
video interactions. The final video embedding incorporated meta-
data, video ID, creator, brand, mean-pooled product and hashtag
embeddings, and other relevant features, all projected through mul-
tiple non-linear layers. We framed the task as binary classification,
predicting whether a video is relevant to a user, with relevance
defined as watch time exceeding a 50% threshold. Training used a
contrastive loss, with positives and negatives determined by this
threshold.
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The main e-commerce catalog model, from which we reused
user embeddings, is trained on a large sample of catalog sessions.
Each session includes articles shown in response to browse or
search requests, contextual data (market, device, category), user
history (clicks, add-to-cart, wishlist, purchases), and subsequent
interactions. The dataset comprises 250 million sessions from 70
million users across 25 markets.

A schematic overview of the scalable two-tower-based Video
Candidate Generation (VCG) architecture is provided in Section 2.

VCG Multimodal (CLIP-based). Subsequently, we introduced a
multimodal retrieval system based on CLIP embeddings, as de-
scribed in Section 3. This approach reused the same scalable two-
tower architecture, with video embeddings precomputed and stored
in an online index for efficient retrieval. User embeddings were
dynamically computed from recent product interactions using CLIP
representations, enabling real-time personalized video recommen-
dations in a shared semantic space.

4.2 Evaluation protocol

Our evaluation procedure focuses on user engagement and is based
on video feed observations. These observations are generated by
the existing recency-based solution, meaning we can expect a rep-
resentative sample of user preferences with fewer sampling and
popularity biases that typically arise with Machine Learning mod-
els. We use a time-based split where the test (hold-out) data is
formed by sequences from the last days. This split corresponds
to the actual production setup. The ground truth is derived from
the video interaction data, where relevance is modeled as a binary
classification problem. A video is considered "watched" (positive
example) if its watch time exceeds a 50% threshold. Each data point
represents a video feed impression, enriched with a representation
of user history.

We evaluate performance primarily using feed-wise ranking
metrics to compare our approach with the current recency-based
method on feeds containing multiple videos. Additionally, we use
video-wise binary metrics for fine-tuning solutions and measuring
performance across all feeds, including single-video impressions.

(1) Feed-wise (list-wise) ranking metrics: NDCG, applied to a
subset of the test set where each example contains at least
one positive and one negative video impressions.

(2) Video-wise (point-wise) binary classification metrics: Accu-
racy, AUC, precision, and recall.

To account for the position of relevant items, we weight NDCG
by inverse propensity scores [13]. Additionally, we monitor the
skewness of popularity and watch-time distributions to assess
the extent to which the model favors shorter or more popular
videos [19].

The ranking metric is specifically used to assess improvements
over the current recency-based production solution. The underlying
assumption is that an improvement in ranking metrics over the
recency-based model should correlate with an enhancement in
the retrieval task, while accepting the potential bias towards more
active users.
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4.3 Visual coherence evaluation

In addition to engagement metrics, our goal is to enhance the visual
appeal of the feed in relation to a user’s history. To measure this,
we define the visual coherence between a user and a video as the
dot product of the averaged content-based embeddings of the user’s
past interactions and the averaged content-based embeddings of
the video’s associated products. This metric reflects how well a
user’s history aligns with a video based on content-related features
such as brand, color, silhouette, and more. These content-based
embeddings are pre-extracted from product image representations,
capturing visual attributes such as color, style, and silhouette to
enable effective similarity comparisons.

4.4 LVLM-as-a-judge evaluation

To complement standard metrics, we used LVLM-as-a-judge (Large
Vision-Language Model) for offline evaluation. Qwen 2.5-VL served
as an external judge, rating the relevance of top-k (k = 5, 10) recom-
mended videos based on a user’s 12 most recent items of interest.
Ratings were assigned on a 5-point scale, from 5 (extremely relevant)
to 1 (no relevance). This approach provides an external perspective,
especially valuable when user behavior data is limited. The prompt
used for LVLM-as-a-judge is summarized in Figure 2.

You are an AI fashion relevance analyst. Your
primary function is to critically and objectively
evaluate the relevance of video content against a
specific user’s fashion history. It is crucial that
you use the defined textual relevance categories
appropriately and avoid defaulting to a generally
positive assessment unless there is substantial,
specific evidence.

<. >

Assign one of the following textual categories for
relevance. Choose the category that most accurately
describes the alignment. Be discerning.

* "excellent_match": <...>

"good_match": <...>

"partial_match": <...>

"poor_match": <...>

no_match": <...>

n

* % % %

Figure 2: LLM prompt for LVLM-as-a-judge evaluation.

4.5 Offline evaluation

Offline evaluation using user behavior data and NDCG with inverse
propensity scores showed only modest improvements in watch-time
metrics for both VCG approaches compared to the recency baseline,
with differences not reaching statistical significance. We hypothe-
size that position and duration biases were stronger than anticipated
in the offline setting. Notably, the VCG Conventional model, trained
on video interaction data, exhibited greater skewness in popularity
and watch-time distributions than both the recency-based and VCG
Multimodal solutions, indicating these biases affected it more. In
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Table 1: Summary of offline evaluation: VCG Multimodal
(CLIP-based) vs recency-based baseline, measured by visual
coherence and average LVLM-as-a-judge scores, with stan-
dard deviation in parentheses.

LVLM-as-a-judge

Method Visual coherence top-5 top-10
Recency-based 13.8 (6.48) 2.72(0.30) 2.43 (0.24)
VCG Multimodal  18.9 (8.23) 3.12(0.35)  3.09 (0.32)
Improvement +37% +14.7% +27%
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Figure 3: Distribution of LVLM-as-a-judge scores for VCG
Multimodal (CLIP-based) and recency-based baseline.

terms of binary classification metrics, VCG Conventional achieved
moderate discriminative power with AUC scores of 0.7.

Given the challenges of debiasing [6, 20, 21], we shifted focus
in the second iteration with VCG Multimodal to visual coherence
and LVLM-as-a-judge metrics, which are especially relevant in
new product scenarios with limited user interaction data. Visual
coherence gains were substantial, with up to a 37% increase for
the top-100 recommended videos. LVLM-as-a-judge consistently
assigned higher relevance scores to top-5 and top-10 VCG-ranked
videos (see Figure 3). These results are summarized in Table 1, which
reports absolute scores and standard deviations.

4.6 Online experiments

We first tested the VCG Conventional approach in an online exper-
iment, which resulted in only modest gains in engagement metrics.
However, this model produced a highly skewed popularity distri-
bution (as defined by item co-occurrence) and a strong bias toward
short videos, so it was not deployed to production.

In the next iteration, we evaluated the VCG Multimodal (CLIP-
based) model. This approach delivered substantial improvements:
the number of videos watched for at least 25% of their duration
increased by 41% (CIL: 21%-61%), and those watched for at least 50%
increased by 50% (CI: 22%-78%). The rates of video starts reaching
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25% and 50% progress rose by 30% (CI: 17%-44%) and 39% (CI: 17%-
61%), respectively. All uplifts were statistically significant, and the
model maintained stable core metrics, confirming proper random-
ization and no negative impact on other KPIs. Importantly, popu-
larity and duration skewness were significantly reduced compared
to the VCG Conventional model. Based on these strong results, the
VCG Multimodal model was rolled out to production.

5 Conclusion

Immersive short-form video feeds introduce unique challenges for
recommender systems, particularly due to strong position and du-
ration biases that can distort relevance and fairness - especially in
new product launches with limited interaction data. We found that
conventional supervised approaches, while effective in mature set-
tings, are highly susceptible to these biases and may not generalize
well. By leveraging a scalable multimodal retrieval system based
on vision-language models and guided by LLMs for evaluation,
we effectively addressed these challenges. Our approach enabled
robust personalization by mapping user history and video content
into a shared semantic space, reducing the impact of position and
duration biases. Offline and online experiments confirmed substan-
tial improvements in both content relevance and user engagement,
with significant gains in watch-time completion rates and a more
balanced distribution of video popularity and duration. These re-
sults highlight the importance of foundation models and external
evaluation frameworks, such as LVLM-as-a-judge, for building fair
and effective recommender systems in immersive video environ-
ments. Future work will further explore advanced LVLM-based
representations to deepen user-video understanding, quantify the
reliability of LLM-based judgments [1], and continue mitigating
bias in evolving recommendation scenarios.
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