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Abstract Previous attempts at using dense content embeddings directly as

Transformer-based sequential recommenders, such as SASRec or
BERT4Rec, typically rely solely on learned item ID embeddings,
making them vulnerable to the item cold-start problem, particu-
larly in environments with dynamic item catalogs. While dense
content embeddings from pre-trained models offer potential so-
lutions, direct integration into transformer-based recommenders
has consistently underperformed compared to ID-only approaches.
We revisit this integration challenge and propose DenseRec, a sim-
ple yet effective method that introduces a dual-path embedding
approach. DenseRec learns a linear projection from the dense em-
bedding space into the ID embedding space during training, en-
abling seamless generalization to previously unseen items without
requiring specialized embedding models or complex infrastructure.
In experiments on three real-world datasets, we find DenseRec to
consistently outperform an ID-only SASRec baseline, even without
additional hyperparameter tuning and while using compact embed-
ding models. Our analysis suggests improvements primarily arise
from better sequence representations in the presence of unseen
items, positioning DenseRec as a practical and robust solution for
cold-start sequential recommendation.
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1 Introduction

ID-based transformer architectures for sequential recommendation
(SASRec [14], BERT4Rec [30], etc.) have achieved significant ad-
vances in recommendation and personalization quality in recent
years. However, item cold-start remains a persistent challenge, par-
ticularly for real-world recommender systems operating with highly
dynamic item catalogs—such as second-hand marketplaces with
millions of new, unique items added daily, or short-video platforms
with continuously emerging content. A natural approach to address
this challenge is leveraging item content descriptions or images to
enable generalization to previously unseen items. With pre-trained
large language models and image embedding models [28, 6] now
widely available, practitioners can readily obtain dense content
embeddings for newly added items. However, directly integrating
these dense content embeddings into transformer-based sequential
recommenders has proven challenging.
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input to sequential transformers have consistently underperformed
compared to pure ID-based approaches [29, 38, 12, 11]. One fun-
damental issue is that while dense embeddings from pre-trained
embedding models excel at capturing semantic content similarity,
they fail to distinguish between semantically similar items with
vastly different user appeal or contextual relevance [17, 38] and
thus struggle to learn item-specific popularity patterns (memoriza-
tion) [29].

To address these limitations, recent work has explored alternative
approaches including training specialized dense embedding models
for recommendation tasks [38, 12] and quantization-based methods
that create "semantic IDs" from content embeddings [27, 11, 29,
36]. While promising, these approaches either require extensive
pre-training of embedding models or add considerable infrastruc-
tural complexity through building and training a separate vector
quantization model and generative retrieval mechanisms that ne-
cessitate changes to existing retrieval infrastructure. Indeed, several
recent studies on industry-scale recommender systems continue to
rely on ID-based sequential models [5, 15]. From a practitioner’s
perspective, there is a clear need for approaches that can leverage
readily available off-the-shelf embedding models without requiring
specialized pre-training or complex architectural modifications to
existing retrieval systems.

In this work, we revisit the direct integration of dense content
embeddings into sequential transformers and propose DenseRec, a
simple yet effective approach that addresses the fundamental limi-
tations of naive dense embedding integration. Our method learns a
linear projection from the dense content embedding space into the
ID embedding space during training, enabling the model to lever-
age both semantic content information and collaborative signals.
This dual-path training strategy allows generalization to previously
unseen items while maintaining the ability to learn item-specific
patterns from interaction data. Importantly, at inference time, our
approach enables controllable selection between the two pathways:
ID-based embeddings for known items (leveraging learned collabo-
rative patterns) and content-based embeddings for cold-start items
(enabling immediate generalization).

In our experiments, we observe that this flexibility allows the
model to exploit both representation types without compromising
performance on either known or unseen items. Furthermore, our
approach requires minimal architectural modifications to existing
transformer-based recommenders and introduces only a single ad-
ditional hyperparameter, which we find to be effective over a wide
range of values and robust across datasets.
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2 Related Work

Sequential Recommendation. Sequential recommendation has
evolved significantly with the adoption of deep learning architec-
tures. Early approaches used recurrent neural networks [10, 31]
to model user behavior sequences. The introduction of attention
mechanisms led to more sophisticated models like BERT4Rec [30]
and SASRec [14], which apply self-attention to capture long-range
dependencies in user sequences.

These transformer-based approaches have become the founda-
tion for modern sequential recommendation systems due to their
ability to capture complex sequential patterns and their superior
performance on standard benchmarks. However, these early models
rely entirely on learned ID embeddings from items present in the
training set, making them vulnerable to the item cold-start problem
or cross-domain recommendation settings when new items are
introduced to the system.

Item Cold-Start with Content Information. Traditional ap-
proaches to the item cold-start problem have relied on content-
based filtering [23] and hybrid methods [3] that combine collabo-
rative and content signals, for example, by presenting items from
both sources in different collections [8] or blending them into a sin-
gle ranking [20]. Early neural approaches explored auto-encoders
for joint collaborative-content representations [34], matrix factor-
ization with item features [7], and multi-task learning for recom-
mendation and content prediction [2]. DropoutNet [33] addressed
cold-start through content features and dropout-based training
simulation, while neural collaborative filtering was extended with
feature interaction layers [9]. Recent work has also explored in-
tegrating dense embeddings from pre-trained language models in
shallow auto encoders [32].

Dense Embeddings in Transformer-based Recommenders.
Using dense embeddings from pre-trained embedding models as
direct replacements for ID-based embeddings has been a common
baseline in various studies, but these approaches generally under-
perform compared to pure ID-based methods [29, 38, 12]. Various
works [13, 12, 38] have thus proposed enhanced mechanisms to
pre-train new language embedding models on the recommendation
data and task itself—as opposed to using off-the-shelf pre-trained
models, which is the focus of our work. In a recent study on an
industry-scale sequential recommender system, content embed-
dings were used to initialize the ID-based embedding table but then
continued to be trained [4]. This strategy only allows inference on
cold-start items if the training does not change the geometry of the
embedding space. Other works have propose to directly transform
the text output of pre-trained generative large language models
(LLMs) into recommendations [19, 39, 21], which has obvious limi-
tations in the item cold-start scenario.

Semantic ID Approaches. A recent line of work has proposed
using "semantic IDs" to bridge the gap between content and collabo-
rative filtering. These approaches typically employ vector quantiza-
tion techniques to convert dense content embeddings into discrete
token "codes" that can then be processed by transformer architec-
tures.
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TIGER [27] introduces a two-stage approach where RQ-VAE [16]
(Residual Quantized Variational Autoencoder) is first trained to
learn semantic item IDs from content, followed by a transformer
that operates on these discrete representations. TIGER and similar
approaches [29, 18, 11, 25] have shown promising results but come
with additional challenges including codebook collapse [40, 37] and
the need of training and maintaining the additional quantization
model (including multiple additional hyper parameters including
code length and codebook size).

In these semantic ID approaches, each item is represented by a
sequence or code of tokens, which fundamentally alters the rec-
ommendation retrieval process. This representation creates infras-
tructural challenges, as one cannot directly generate a user repre-
sentation from item interaction sequences and perform standard
(approximate) nearest neighbor search in the dense embedding
space [36, 29].

Our Contribution. In contrast to existing approaches, DenseRec
provides a simple yet effective solution that requires minimal ar-
chitectural changes to existing transformer-based recommenders.
Unlike naive dense integration approaches that typically underper-
form, our dual-path training strategy enables effective utilization
of both collaborative and content signals. This positions our work
as a practical middle ground that achieves strong cold-start per-
formance without the complexity overhead of more sophisticated
approaches.

3 Method: DenseRec
3.1 Problem Formulation

We consider the sequential recommendation problem where users
interact with items over time. Let U = {uy, us, ..., u¢;|} be the set
of users and I = {iy, iy, ..., i 7|} be the set of items observed during
training. For each user u, we have a sequence of interactions S* =
[i%,d%,..., irS“I] where i}‘ € 7 represents the j-th item interacted
with by user u. In a common production setting, the model is usually
trained on sequences collected until a certain time stamp £, and the
main task then is to p redict a user’s next item interaction given a
sequence of items collected after t.

The key challenge we address is the item cold-start problem: at
test time, we may encounter items i ¢ 7 that were not observed
during training. For each item i € T U ., (Where 1;,,, represents
new items), we assume access to a dense content embedding c; €
R9% derived from pre-trained models applied to item descriptions,
images, or other content features.

3.2 DenseRec Architecture

We formulate the DenseRec model as an extension to the SASRec
transformer architecture with a dual-path design that can leverage
both learned ID embeddings and dense content embeddings. The
model maintains two parallel embedding pathways:

(1) ID Path: Traditional learnable embeddings E4 € RIZ1xd
where d is the embedding dimension

(2) Dense Path: Pre-computed content embeddings C €
projected into the ID embedding space, via a learnable pro-
jection layer P : R% — R?,

R\I\Xdc
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Figure 1: DenseRec architecture overview. The model maintains two parallel embedding pathways: (1) ID Path using traditional
learnable embeddings, and (2) Content Path using pre-computed content embeddings projected into the ID embedding space
via a learnable projection layer. During training, a probabilistic selection mechanism determines which path to use for each

token position.

Figure 1 illustrates the overall architecture of our DenseRec
model, showing how the dual-path design integrates both ID-based
and content-based embeddings through the learned projection
mechanism. In our experiments shown below, we implemented
P as a simple single linear transformation:

P(c;) = Wic; + b, 8

but future work could explore more complex, non-linear architec-
tures.

3.3 Dual-Path Training Strategy

During training, DenseRec employs a probabilistic path selection
mechanism controlled by the hyperparameter dense path probability,
denoted by pgense € [0, 1]. For each token position in the input
sequence, we randomly decide whether to use the ID path or dense

path:
(t) Eid[i] with probability 1 — pgense @)
e. =
! P(c;)  with probability pgense
where eft) is the embedding used for item i at position ¢ in the
sequence.

This stochastic training strategy serves two purposes:

(1) It forces the model to learn meaningful ID embeddings while
simultaneously training the projection layer
(2) It ensures the projection layer learns to map content em-
beddings to representations that are compatible with the
transformer’s learned dynamics
The same probabilistic selection applies to the output embed-
dings used in the loss computation, ensuring consistency between
input and output representations.

3.4 Model Forward Pass

Given an input sequence S = [iy, iz, . . .
ceeds as follows:

,in], the forward pass pro-

(1) For each position ¢, determine path selection z; ~ Bernoulli(pgense)
(2) Compute token embeddings:

E4[i,] ifz; =0
h;o) _ [ir] 1 Zt 3)
P(c;,) ifz =1
(3) Apply positional embeddings and transformer layers as in
standard SASRec:
H**Y = TransformerBlock ") (H(l)) (4)

(4) Generate final sequence representation HY) € R? from the
output of the last item in the sequence.

3.5 Loss Function and Training

We use the same loss function as SASRec with negative sampling,
but apply the dual-path strategy to both input sequences and target
items. For a sequence ending with target item i;4rger and negative

samples {i,(lje?} 5.(:1, we compute:

K
£ =—logo(hyei,.) ~ ) logo(-hye, n) 5)
Jj=1

where h,, is the sequence representation and e; is the output em-
bedding for item i, which is either the ID-based embedding or the
projected dense embedding, selected using the same probabilistic
mechanism as with the input embeddings. The model parameters
{E™, W, Transformer weights} are jointly optimized using stan-
dard backpropagation.
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3.6 Inference and Handling of Cold-Start Items

At inference time, DenseRec follows the standard sequential recom-
mendation inference process similar to SASRec and other transformer-
based approaches. Given a test sequence, the model generates a
sequence representation h, from the final position. This represen-
tation is then used to compute similarity scores with all candidate
items via dot-product operations. Retrieval can be performed using
k-nearest neighbor (KNN) or approximate nearest neighbor (ANN)
methods for large item catalogs to generate the final recommen-
dations. DenseRec handles different item types during candidate
scoring as follows:

Known Items: For items i € 7 that were observed during
training, we exclusively use the learned ID embeddings e; = E“[i].

Cold-Start Items: For items i ¢ 7 that were not seen during
training, we exclusively use the dense path e; = P(c;). This allows
the model to generate meaningful representations for new items
without requiring retraining, leveraging the projection layer learned
during the dual-path training process.

Arbitrary Item Addition: A practical advantage of our ap-
proach is that we can dynamically add arbitrary items to the candi-
date set as long as we have their dense content embeddings. New
items can be immediately incorporated into the recommendation
process by simply computing their projections P(c;) into the ID
embedding space that is used by the KNN or ANN method for candi-
date retrieval, enabling real-time catalog expansion without model
retraining. This contrasts with hybrid approaches that require a
catch-all ID for all cold-start items or semantic ID and generative
retrieval approaches where performing retrieval on never-seen-
before item code combinations can be challenging.

4 Experimental Setup

Our experimental evaluation focuses on assessing whether adding
DenseRec’s dual-path mechanism to an existing architecture (SAS-
Rec) can improve performance in a cold-start setting with minimal
additional effort—specifically without additional hyperparameter
optimization and little engineering overhead.

4.1 Datasets

We evaluate our approach on three categories from the Amazon
Reviews 2023 dataset [12]: Sports and Outdoors (Sports), Toys and
Games (Toys), and Video Games (Video). These categories were se-
lected for consistency with related work on semantic ID approaches
[27] and content-based sequential recommendation [12].

To ensure our experimental setup closely mirrors real-world
production scenarios, we adopted the absolute-timestamp splitting
methodology proposed by the Amazon Reviews 2023 data set au-
thors [12].! This approach splits data based on interaction times-
tamps rather than the commonly used leave-one-out methodology,
creating temporally coherent train/validation/test sets. In partic-
ular, unlike leave-one-out splitting where large portions of test
sequences are observed during training, absolute timestamp split-
ting ensures that test sequences can contain entirely new users or
interactions that occurred after the training cutoff, more accurately
simulating the real-world production setting. For training we filter

!See also https://amazon-reviews-2023.github.io/data_processing/0core. html#absolu
te-timestamp-splitting
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out all items with less than 5 interactions and sequences with fewer
than 2 item reviews. We retained all test set items that were absent
from the training set to simulate realistic item cold-start scenar-
ios. This design choice reflects production environments such as
second-hand marketplaces where new, previously unseen items are
continuously added by sellers and must be recommended without
historical interaction data.

Table 1 provides detailed statistics for each dataset, highlighting
the cold-start challenges inherent in our experimental setup.

Table 1: Dataset statistics for Amazon Reviews 2023 cate-
gories including the ratio of cold-start "target” items and
ratio of cold-start items among all items that are used to
generate user/sequence representations at test time.

Statistic Toys Sports  Video
# Items 266,346 364,657 113,297
# Users 2,168,966 2,787,852 620,055
Avg. sequence length 5.72 5.62 6.18
Cold-start target items 49.2% 36.8% 51.7%
Cold-start items in test seqs. 24.7% 21.9% 23.0%

4.2 Models

The goal of the main experiment was to demonstrate the added
value of the dense-to-ID projection in cold-start scenarios. We
therefore compared DenseRec directly to the standard ID-based
SASRec as described in Kang et al. [14]. While various improve-
ments to the original SASRec architecture have been proposed (e.g.,
improved negative sampling strategies [26], or modifications to
the loss function [35, 1]), many of those extensions are orthog-
onal to—and could potentially be combined with—the DenseRec
architecture.

To demonstrate the practical simplicity of our approach, we
employed the following hyperparameter optimization (HPO) strat-
egy that provides an unfair advantage to the baseline ID-based
SASRec model: We performed HPO for the ID-based SASRec base-
line to establish a suitable model configuration across all data sets.
These optimized hyperparameters were then directly transferred
to DenseRec with a single addition: a fixed pgepnse of 0.5 across
all datasets (that is, a fair "coin flip" split between dense and ID
path for every item, see also the discussion in Section 5 on why
this middle-ground makes sense intuitively). We thus selected the
best parameters for the baseline model and performed no dataset-
specific or model-specific HPO for DenseRec itself. This allows
us to have confidence that the obtained results were not due to a
more intensive HPO on our method than on the baseline method,
highlighting the robustness and ease of deployment of the proposed
approach. The complete hyperparameter specifications and exact
HPO method for all models are provided in the Appendix.
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4.3 Content Embeddings

For dense content embeddings, we used the all-MinilLM-L6-v2
model? from the sentence-transformers library [28] to embed
item content. Text inputs were formatted as
"title: {title}, description: {description}"

and capped at 300 characters to ensure consistent processing across
all categories. This, by today’s standards, relatively lightweight text
embedding model (22.7M parameters, embedding dimension of 384)
was chosen to demonstrate that our approach works effectively
even with compact content representations, making it practical for
production deployment where computational efficiency is impor-
tant.

4.4 Evaluation Protocol

All models were trained on the provided training splits and eval-
uated on the corresponding test sets. For each test sequence, we
evaluated model performance by predicting only the last item in
the sequence, using the preceding items as input context. Crucially,
due to the absolute timestamp-based splitting methodology, no por-
tion of any test sequence was observed during training, ensuring
a truly out-of-time evaluation that reflects real-world deployment
scenarios.

We used Hit Rate@100 as our primary evaluation metric, com-
puted against the full item catalog (all items present in both training
and test sets) rather than a random sample of negatives. This ap-
proach reduces evaluation variance and better reflects production
recommendation scenarios where models must retrieve from the
entire available inventory. The choice of k=100 aligns with mod-
ern retrieve-then-rank recommendation architectures where high
recall in the retrieval stage is critical for subsequent re-ranking
performance.

For cold-start evaluation, we specifically analyze performance
on test set items that were not observed during training, providing
direct measurement of generalization capability to unseen items.

5 Results

Overall Performance. Table 2 presents the Hit Rate@100 test set
performance comparison between our DenseRec approach and the
ID-based SASRec baseline.

Table 2: Hit Rate @100 performance comparison and relative
improvement of DenseRec compared to ID-based SASRec
across all three data sets.

Model Toys Sports Video
ID-based SASRec 2.42 4.75 8.41
DenseRec (Ours) 3.25 5.35 9.37
Relative Improvement +34.3% +12.6% +11.4%

% of cold-start items among hits ~ 2.4% 0.4% 2.3%

DenseRec consistently outperformed the ID-based approach
across all three categories, demonstrating the effectiveness of our

Zhttps://huggingface.co/sentence-transformers/all- MiniLM-L6-v2
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dual-path training strategy and learned projection mechanism. We
note again we used a small backbone embedding model and no
DenseRec-specific HPO, suggesting that there is headroom for fur-
ther improvements compared to the ID-only SASRec.

Where does the performance lift come from? The DenseRec
model can leverage cold-start embeddings in two ways to provide
a lift compared to the ID-only model:

(1) Cold-start items as target: By projecting cold-start items into
the retrieval candidate space, DenseRec can retrieve relevant
items that were never observed during training.

(2) Cold-start items in the sequence: Even if the target item is a
known item, DenseRec might be able to build better (test) se-
quence representations by including cold-start items, whereas
the ID-based model has to exclude those items when building
the user representation.

Table 1 shows the prevalence of cold-start items in the test se-
quences and the test target items. Table 2 shows the percentage
of hits (that is, correct predictions) that were on cold-start items.
These range from only 0.4% (Sports) to 2.4% (Toys), suggesting that
DenseRec obtained its superior overall prediction performance by
leveraging cold-start items to build better sequence representations
as opposed to correctly predicting cold-start items.

The impact of pge,s.. The dense path probability parameter pgense
determines how often the dense embedding path is used instead
of the original ID-based path. Intuitively, the parameter thus de-
termines how much of the training data is used to learn the ID-
embedding space vs. learning the projection from the dense into
the ID-embedding space. It also seems intuitively reasonable to
avoid either extreme: for pgense = 0, the model will not use train
the projection layer at all and thus cannot utilize the dense content
embeddings, which is basically equivalent to using ID-based recom-
mender systems. For pgepnse = 1, the ID-based embedding space will
be learned solely through via projected dense embeddings, similar
to the direct dense embedding implementations observed in exist-
ing works. In our main experiment described above, we therefore
opted for pgense = 0.5 as a happy medium that intuitively makes
sense and does not require additional HPO.

In the following set of experiments, we computed the perfor-
mance of the DenseRec model for pgense € [0.0,0.1,...,0.9,1.0]
across all three data sets to evaluate the robustness of the model’s
performance with respect to the choice of pgepse. Figure 2 shows
HitRate@100 for the different values of pgense as well as the perfor-
mance of the ID-based SASRec model from Table 2, for all three data
sets. Overall, the DenseRec model is remarkably robust to the choice
of pgense anywhere except for the extreme value of pgense = 1.0,
matching or outperforming the ID-based model across all values be-
tween 0.2 and 0.8. Indeed, for Toys and Sports, we observe a (quite
noisy) inverse U-shape in the performance, which roughly matches
the intuition to avoid either extreme of 0.0 or 1.0 described above.
That said, our "intuitive" choice of pgense = 0.5 turned out to never
be the best performing value, indicating that an additional HPO on
the pgense might further improve the performance of DenseRec.
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Figure 2: DenseRec performance as a function of the pg.,sc parameter and the ID-based SASRec baseline (dashed line and
Pdense = 0.0). For pgense = 1.0, the model is equivalent to the "naive" implementation of using only dense content embeddings.

For Video, we do not observe a U-shape, but an almost monotonic
decrease in performance with increasing pgense > 0.1, which might
indicate that text embeddings were less useful for this data set.

6 Conclusion

Combining behavioral signals with content information is among
the earliest and most enduring concepts in recommender systems
research [3]. In this paper, we revisited this fundamental idea
within the specific context of transformer-based sequential recom-
mender models. We began by highlighting that directly integrating
dense content embeddings into transformer-based sequential rec-
ommenders has consistently underperformed compared to purely
ID-based methods [29, 38, 12, 11], and we replicated these find-
ings in our experiments, where we observed low hit rate values
for pgense = 1.0 (which is equivalent to using only content embed-
dings).

To address this limitation, we introduced DenseRec, a simple
yet effective approach designed explicitly for ease of integration.
DenseRec involves minimal architectural modifications to existing
ID-based sequential recommenders and introduces only a single
additional hyperparameter, thus significantly reducing complexity,
hyperparameter optimization requirements, and infrastructural
overhead.

Our experimental design was intentionally favoring the baseline
method: Hyperparameter optimization was performed exclusively
for the ID-based SASRec model, whereas DenseRec was evaluated
without any dedicated tuning and used only a modestly sized pre-
trained language model for content embeddings. Despite these con-
straints, DenseRec consistently outperformed the ID-only baseline,
demonstrating its practical effectiveness and robustness.

The classical item cold-start problem focuses primarily on pre-
dicting items unseen during training. However, modern recom-
mender systems increasingly require real-time responsiveness, con-
tinuously integrating new items and user interactions into updated
recommendations. This real-time necessity makes the cold-start
challenge worse because purely ID-based methods inherently lack

mechanisms to incorporate newly introduced items into user or
sequence representations dynamically.

Our findings suggest that DenseRec represents a promising step
toward resolving this variant of the cold-start problem. The ob-
served performance gains were largely attributable to DenseRec’s
improved capability to construct meaningful sequence representa-
tions from test sequences containing previously unseen items.

In the current work, we used the SASRec architecture as our
backbone model for sequential transformer-based recommendation,
given its simplicity, flexibility, and consistently strong, near state-
of-the-art performance [24, 26]. However, the DenseRec approach
is not limited to SASRec and can readily be integrated into extended
models such as gSASRec [26] or other ID-based sequential recom-
menders, including more recent architectures like Mamba4Rec [22].
The minimal architectural changes required by DenseRec make
it broadly applicable across a wide range of existing transformer-
based recommendation systems.
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A Appendix

A.1 Hyper parameter settings

Table 3 shows the parameters that we used for the baseline ID-
SASRec implementation.

Table 3: SASRec hyperparamters

Hyperparameter Value
Embedding dimension 64
Epochs 20
Batch size 512
Max sequence length 30

# attention heads 2

# transformer blocks 3
Dropout rate 0.5
Use positional embeddings True

Negative samples per positive 64

As explained in the main text, for the DenseRec model we used
the exact same hyperparameters and added a constant dense path
probability of pgense = 0.5.
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