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Figure 1: Interface of the “Text2Playlist” tool on the website version of Deezer, creating a personalized playlist generated from

an idea given by a text from a Deezer user.

Abstract

The streaming service Deezer heavily relies on the search to help
users navigate through its extensive music catalog. Nonetheless,
it is primarily designed to find specific items and does not lead
directly to a smooth listening experience. We present Text2Playlist,
a stand-alone tool that addresses these limitations. Text2Playlist
leverages generative Al, music information retrieval and recom-
mendation systems to generate query-specific and personalized
playlists, successfully deployed at scale.

CCS Concepts

« Information systems — Retrieval tasks and goals; Recommender
systems; Personalization.
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1 Introduction

Search engines of online content platforms are essential to explore
large catalogs of items [23]. Traditionally, search systems have been
optimized for narrow intent queries, where users have a focus mind-
set aimed at a navigational goal [16, 35], i.e., looking for specific
entities such as music tracks, products and books [2, 12, 24, 33]. In
contrast, users with an exploratory mindset, aimed at an informa-
tional goal, use broad intent queries (e.g., in music domain “Chill
vibes on a rainy afternoon”) [27, 35, 36]. In particular, the search en-
gine of the French music streaming service Deezer helps 16 million
users from 180 countries access more than 120 millions of music
tracks. Despite supporting both intent queries, its design prioritizes
navigation: the small tool bar does not encourage long queries and
search results cannot be easily transformed into playlists.
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Figure 2: Overview of the Text2Playlist framework from Section 3, available for online requests in our production environment

on Deezer.

In this paper, we present Text2Playlist, illustrated in Figure 1, a
personalized playlist creation tool, explicitly dedicated for broad
intent queries, distinct from the search feature. It takes advantage
of the recent rise of Large-Language Models (LLMs) [34, 39, 40] and
gets inspiration from Retrieval-Augmentation Generation (RAG)
framework [26]. Text2Playlist has been deployed on Deezer mobile
and web applications for a first test phase of 5% of premium users
since July 2024 and 20% since October 2024. This paper is orga-
nized as follows. In Section 2, we further detail our motivations for
such a system. In Section 3 we detail how we use together query
extraction, various metadata sources, Deezer recommendation Sys-
tem and LLMs to build this solution. In Section 4, we explain how
Text2Playlist is deployed on Deezer and present analysis based on
the first data gathered. We conclude and discuss areas of improve-
ment in Section 5.

2 Where to Explore and Save Music on Deezer

To explore the Deezer catalog, users can either rely on recommen-
dation features or use the search function for more targeted music
content. In this paper, we will focus on this latter way to explore
and save music. Intent of the query - narrow vs broad - is identified
by the search system thanks to a model combining search patterns
and item clicks among historical queries [27, 35]. On Deezer, nar-
row queries comprise 80% of the total; they focus on providing the
specific music entity specified in the query - it can be tracks, artists
or albums. Although the remaining 20% of broad queries are less
numerous and more challenging to satisfy, they are essential to

address as they foster further catalog exploration and enrichment
of personal libraries, both strong signals of engagement on the
platform [16]. Despite these promising results, the current search
bar is intentionally primarily designed for narrow queries and is
not adapted to long, complex - broad queries. Besides, it is not
straightforward to transform search results into a seamless music
experience. Indeed, before listening to the search output, users must
manually sort content into playlists, which can be time-intensive.

3 Text2Playlist, a Playlist Generation Tool from
Text

Developed in 2024, the Text2Playlist engine, illustrated in Figure
1, aims to address these limitations. It encourages users to write
their music needs and generates a personalized playlist, tailored to
the query. Figure 2 provides a summary of Text2Playlist system in
production, further described in this section.

3.1 Tags Extraction using LLM and Tracks
Retrieval

Tags are often characterized as keywords to describe key informa-
tion (e.g., for music items we can talk about music genre, decade,
mood, artist gender, language...). They are useful to boost relevance
matching, help query reformulation and item recommendation
[25, 28, 30]. A query may contain information that is explicitly
or implicitly expressed. For example, in the query “I want music
from the 90s for work”, we can extract the explicit decade tag “90s”
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named by the user, but we can also infer they may prefer “Fo-
cus” mood tracks to be able to work during their listening session.
Thanks to a LLM, we deduce both explicit and implicit tags from
the query [1, 20, 32]. Then we leverage tags already existing to
describe the Deezer catalog. It comes from manual annotations
from music experts, but also various internal models relying on
audio content analysis and user-made playlists to expand the cover-
age [6, 9-11, 13, 15, 17-19, 31]. Tracks matching the extracted tags
from the query using the LLM are retrieved and factored into JSON
format.

3.2 Leveraging Collaborative Filtering for
Personalization

Most of our personalized recommender systems [3, 4, 6-8] leverage
latent models for Collaborative Filtering (CF) [5, 22]. By analyzing
usage data on Deezer, they learn low-dimensional embedding vec-
tor representations of users and tracks, in a vector space where
proximity reflects preferences. Then, they offer recommendations
based on embedding similarity metrics [6, 8]. After computing the
cosine similarities between the user and the tracks obtained in 3.1,
the list is reordered in descending order of similarity, first tracks
being the closest to the user profile.

3.3 Tracklist Refinement using LLM

Inspired by two-stage recommender systems [38] and RAG tech-
nique [26], a LLM is applied on the list of tracks and tags beforehand
transformed into an unstructured text, to prioritize tracks that best
match the original query. Additional rules such as artists diversity
and overall quality of the playlist are also mentioned in the LLM
prompt to optimize the final user experience.

4 Deploying Text2Playlist on Deezer
4.1 System Deployment

From a technical standpoint, this system was designed as a stand-
alone framework, written in Python and running on a Kubernetes
cluster. The LLM used for tags extraction (3.1) and playlist refine-
ment (3.3) is Gemini Flash 1.5 [37]. This choice was mainly driven
by cost considerations, as Gemini Flash costs are calculated based
on the number of input and output tokens. Therefore, there is no
costs incurred when there is no usage, which is beneficial when
gradually rolling out such a feature that may not be in constant use.
User and song-related data (3.1), including CF embedding vectors,
mood scores and other catalog information, are exported daily in
a Cassandra cluster. To retrieve the tracks matching the extracted
tags we use Elasticsearch [14]. For user-song affinity scoring (3.2),
we use a Golang application incorporating the Faiss library [21].

4.2 Empirical Analysis

After weeks of internal tests, Text2Playlist was released in July 2024
to 5% of premium users on mobile and web. Since October 2024, it
has been expanded to 20% with success, which is promising for its
wider roll-out. One key metric we analyze to gauge user satisfac-
tion is the proportion of playlists generated by the feature that are
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Figure 3: Percentage of user queries specifying each category

listened to in the following days: while it occurs for 27% of man-
ual playlists, it is 45% for the generated playlists by Text2Playlist,
indicating a positive engagement with the feature.

One of the main motivations behind this work was to analyse
real data to better understand how users explore our music catalog
via natural language queries. When we look at the usage of the
Text2Playlist tool, it shows that over 62% of the queries include
genre tags, making this the primary driver of the search behavior.
Combined or not, genres and moods capture the majority of the
user intent, while other tags, like decades or lyrics, are less frequent.

Lastly, we report most frequent tags of moods asked by the
users are “Chill” and “Party”, representing even nearly half of the
requested moods. These observations provide valuable insights
illustrating what kind of music users want through broad queries
on Deezer over time.

Note: our experiments will be further illustrated and discussed in
the RecSys Workshop EARL associated with this article. Resources
related to this talk will be available on: https://github.com/deezer/
text2playlist-recsys2025.

5 Conclusion

In this paper, we presented Text2Playlist, a stand-alone tool de-
signed for generating personalized playlists from text at scale.
Text2Playlist feature was successfully deployed on the music stream-
ing service Deezer in 2024. Beyond demonstrating promising per-
formance, this system provides valuable insights about users’ music
needs and how they articulate them (e.g., what are the most pop-
ular moods recognized by the LLM in the queries 4.2?). Our team
also plans to increase the coverage and diversity of the extracted
tags (e.g., could we use LLM or lyrics to enrich even more music
representation [10]?). Besides, as shown in 4.2, users often need to
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reformulate queries: with the surge of assistant-driven interactions,
we could refactor Text2Playlist into a conversational tool [29].
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