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Abstract
Multimodal recommendation has emerged as a critical technique in
modern recommender systems, leveraging content representations
from advanced multimodal large language models (MLLMs). To
ensure these representations are well-adapted, alignment with the
recommender system is essential. However, evaluating the align-
ment ofMLLMs for recommendation presents significant challenges
due to three key issues: (1) static benchmarks are inaccurate be-
cause of the dynamism in real-world applications, (2) evaluations
with online system, while accurate, are prohibitively expensive
at scale, and (3) conventional metrics fail to provide actionable
insights when learned representations underperform. To address
these challenges, we propose the Leakage Impact Score (LIS), a
novel metric for multimodal recommendation. Rather than directly
assessing MLLMs, LIS efficiently measures the upper bound of pref-
erence data. We also share practical insights on deploying MLLMs
with LIS in real-world scenarios. Online A/B tests on both Content
Feed and Display Ads of Xiaohongshu’s Explore Feed production
demonstrate the effectiveness of our proposed method, showing
significant improvements in user spent time and advertiser value.
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1 Introduction
With increasing user engagement in exploring content feeds, mul-
timodal recommendation techniques play a vital role in modern
recommender systems, as they can leverage rich information from
content beyond user behaviors. Prior works have shown that com-
bining multimodal content representations with user behavior data
leads to substantial gains in several applications [5, 13, 15, 32, 34].

The rapid advancement of multimodal recommendation has been
paralleled by remarkable progress in multimodal large language
models (MLLMs), such as GPT-4V [1], Gemini [20], and Qwen-
VL [2]. One of the key lessons in creating state-of-the-art MLLMs is
their alignment with human preferences. Typically, the alignment
is assessed using sophisticated benchmarks [22, 28, 33], where a
weighted average of scores serves as the evaluation metric [2, 20].
While this metric works well for world knowledge domains, its
applicability to recommender systems is inherently limited by the
system’s dynamism: shifting user interests and continuous algo-
rithmic updates. For example, if the current recommender system
already incorporates an MLLM’s representations, similar represen-
tations will fail to deliver significant performance improvements.

To measure the alignment of an MLLM for the current recom-
mender system, the AUC Improvement Score (AIS), defined as the
AUC gain when applying MLLM’s representation to the ranking
model, is commonly adopted as themetric in practice [12, 18].While
AIS addresses system dynamism by leveraging recent behavior data
and the production ranking model, it suffers from the substantial
computation costs at scale, primarily due to its dependency on
training MLLMs aligned with ranking models and inferring rep-
resentations on billions of multimodal items. Furthermore, when
AIS indicates marginal improvement and further optimization is re-
quired, it introduces a diagnostic challenge to distinguish whether
the bottleneck lies in (1) suboptimal representation alignment or
(2) ineffective utilization of existing representations.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To overcome these challenges, we propose the Leakage Impact
Score (LIS), a novel metric that evaluates the quality of preference
data construction rather than directly assessing MLLMs. LIS quan-
tifies the ranking performance gap between models trained with
and without leaked preference information. Unlike AIS, LIS elimi-
nates the need for expensive MLLM training and inference on multi-
modal data. We argue that LIS can accuratelymeasure the upper
bound of preference data, while the capabilities of MLLMs
determine how closely we can approach this bound. More-
over, we share our practical experience on validating preference
data using LIS, resulting in effective preference data construction
methods.

We conducted online A/B tests in the Explore Feed of Xiaohong-
shu (also known as the RedNote) 1, to further study LIS. Specifically,
we first align MLLMs with preference data validated by LIS and
then feed the aligned representation into the production ranking
model. The results of the online A/B test in both recommendation
and advertisement scenarios demonstrate significant improvements
in core metrics, such as user time spent and advertiser value.

Our contributions are summarized as follows:
• We introduce the Leakage Impact Score (LIS), a novel metric
that assesses the upper bound of given preference data, for
multimodal recommendation.

• Practical experience is shared, where we introduce two types
of preference data and demonstrate how to validate them
with LIS efficiently.

• We conduct online A/B tests on two real-world applications,
showing the effectiveness of our proposed methods in large-
scale scenarios.

2 Preliminary and Motivation
This section outlines the standard pipeline for deploying MLLMs
aligned with industrial recommender systems, highlighting the
complexities and challenges of multimodal recommendation at
scale.

As mentioned above, static benchmarks commonly used for eval-
uating world knowledge domains are not suitable for recommender
systems due to their dynamism nature. Consequently, the AUC im-
provement score (AIS) on the most recent ranking model is adopted
in practice, as it demonstrates consistent correlation between offline
improvements and online performance. The standard deployment
pipeline consists of three key steps:
Step 1. Preference Data Construction: Prior works have established

the critical role of alignment and proposed various data
construction methods that leverage user behaviors for pref-
erence alignment [13, 15, 34]. This step involves significant
effort in preference data design, including cleaning and cu-
ration.

Step 2. MLLM Training: Using the constructed preference data, the
next step involves fine-tuning MLLMs to achieve strong
validation performance. Prior works have demonstrated the
importance of preserving MLLMs’ world knowledge while
adapting them to recommendation tasks [21, 31, 32]. This
step requires substantial computational resources for MLLM
refinement.

1https://www.xiaohongshu.com/explore

Step 3. Production Model Validation. The final step evaluates the
aligned representations by integrating them into the pro-
duction model. Prior studies indicate that effectiveness de-
pends heavily on how downstream models utilize these rep-
resentations [5, 18, 26]. Therefore, this step involves both
algorithmic exploration of representation application and
computational overhead for inferring representations.

Note that the above three steps form a single iteration. When AIS
indicates insufficient improvement, we need to diagnose the issue
and repeat the iteration. In practice, this iterative process often
requires multiple rounds of execution, creating a bottleneck for
further applications of multimodal recommendation.

In the aforementioned pipeline, except for the essential work
of human design, we observe substantial computational overhead,
particularly when the final AIS performance is unsatisfactory. We
identify the root cause as the inability of current methods to prop-
erly evaluate the relationship between preference data and the
ranking model requirements. A metric to pre-validate preference
data could allow the pipeline to focus exclusively on MLLM re-
finement and downstream application, significantly mitigating the
overhead from multiple iterations.

3 Leakage Impact Score
We introduce the Leakage Impact Score (LIS), a novel metric that
leverages the concept of data leakage to measure preference data.
Data leakage occurs when information from outside the training is
involved in the training procedure. Our work focuses specifically
on temporal leakage—for instance, when predicting yesterday’s
behavior while inadvertently including today’s data in training.
This example mirrors the real-world constraint where production
systems cannot access a user’s future interests, making the trained
model overestimated [14, 25].

While data leakage is typically avoided, we repurpose this phe-
nomenon constructively. In recommender systems, models trained
with leaked data exhibit offline performance that fails to generalize
to online deployment. This discrepancy arises because the online
system cannot access the leaked data before inference. Note that
data unavailable in online deployment may still serve a constructive
purpose in offline settings: it provides a mechanism to quantify
data importance—irrelevant leaks cause negligible impact, while
informative ones lead to significant overestimation.

To this end, we define the LIS as the impact when involving
temporally leaked information in the model. The model here refers
to the recommender, not the MLLM, thus avoiding the computa-
tional overhead associated with MLLMs. In particular, we construct
features from leaked data, and the AUC improvement of applying
these features to the production ranking model is adopted as the
LIS. Note that LIS introduces the upper bound of the preference
data, as it is equivalent to a means of accurately predicting future
behaviors. If we could validate the effectiveness of an approach to
construct the preference data, we believe that MLLMs are able to
learn generalized patterns from it.

Here is an example to demonstrate how to calculate LIS in prac-
tice. Consider click-through rate prediction, where the production
model predicts a user’s click probability given their history and
a candidate item. If we augment this model by incorporating the
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next item clicked by the user as an additional feature to the produc-
tion model, the resulting AUC improvement constitutes the LIS. A
high LIS suggests this click behavior contains valuable signal for
preference data construction. However, since user behaviors are
inherently noisy, effectively distilling this signal into MLLM train-
ing remains challenging—a challenge we address in the following
section.

4 Practical Experiences
In this section, we introduce two types of preference data and how
to validate them with LIS. The first type of preference data is sparse
representations learned by the recommender. In particular, without
loss of generality, we consider the embedding of item ID in the
ranking model. If there are multiple embedding slots representing
items, we can choose the most important one through the feature
importance techniques. We validate the impact of leaked item ID
embedding as follows. Formally, let M𝑇 denote the production
ranking model serving online at date 𝑇 , i.e., the model have never
seen behaviors on date 𝑇 or thereafter. We replace its item ID
embedding with those fromM𝑇+𝑛 , where 𝑇 + 𝑛 denotes the 𝑛-th
date after date 𝑇 . As shown in Table 1, this substituion yields LIS
values of 0.06 and 0.09 on Xiaohongshu’s Explore Feed ranking
model. In our settings, where an absolute increase of 0.0010 in
AUC is considered significant, these results clearly demonstrate the
potential effectiveness of ID embeddings as preference data.

We attribute this phenomenon to the fact that the item ID serves
as the unique identifier for an item, causing the recommender to
encode the item’s distinctive and important information within its
ID embedding. The next section will show that MLLMs can learn
generalized information from ID embeddings and gain significant
improvement in online experiments.

Table 1: LIS by leaked ID embedding using the data from 𝑛

days later.

n = 7 n = 30
LIS +0.06 +0.09

The second type of preference data is from the retrieval perspec-
tive. For each item, we identify its 5 most similar items as its side
information. This side information is considered as the feature of
the target item. Note that if the target item is in the cold-start phase,
incorporating similar items with well-learned representations as
auxiliary inputs may enhance the cold-start performance. With
leaked data, we can accurately identify items similar to a cold-start
item with the help of behavior data [29], since we already have
knowledge of posterior behaviors.

However, the results show negligible LIS improvement. This
suggests the potential existence of analogous information within
the current ranking model. This finding is particularly insightful as
it reveals which preference data types merit MLLM-based learning
versus those that can be effectively handled by existing system
components.

5 Related Work
5.1 MLLM Evaluation
The primary design objective for MLLMs is to create intelligent
chatbots that can thoroughly address human queries spanning both
perceptual understanding and logical reasoning. To evaluate these
comprehensive capabilities, researchers have developed numerous
specialized benchmarks across world knowledge domains. Early
studies proposed evaluating MLLMs with visual understanding
tasks [8, 9], extend by following works on multilingual [19, 28],
video understanding [6, 33], and mathematics [17, 22]. Beyond gen-
eral capabilities, researchers have also explored how to evaluate
MLLMs for specific downstream tasks [7, 11, 16, 23, 30], focusing
more on the mastery of domain knowledge and skills. However,
all these benchmarks employ static construction methodologies,
making them unable to generalize to recommender system scenar-
ios—which are inherently dynamic systems where user interests
constantly evolve and algorithmic upgrades occur continuously.

5.2 Multimodal Recommendation
Multimodal recommendation aims to leverage multimodal repre-
sentations to improve the recommendation performance, which is
critical inmodern recommender systems, especially for multi-media
content scenarios like TikTok and RedNote. Early works [10, 24]
only considered the utilization ofmultimodal representations, ignor-
ing the alignment between multimodal models and recommender
systems. Recent works have presented various sophisticated strate-
gies for constructing perference data to align MLLMs with recom-
mender systems. CB2CF [3] is the first work that considers this
alignment by incorporating users’ behaviors, where the content
encoder learns human preference from collaborative filtering vec-
tors. [13] further addressed the instability issue in the learning
procedure of original CB2CF and successfully applied it to the
diversified recommendation task in a large-scale scenario. [32]
proposed maintaining MLLMS’ world knowledge capabilities with
auxiliary tasks about content predictions. [18] argued that MLLMs
should learn from deep signals in user behaviors such as search
and purchase, proposing to mine hard negatives when constructing
negative samples. While the above works have made significant
progress in multimodal recommendation, the process of deploying
MLLMs for recommendation still suffers from challenges in evalu-
ating the alignment. In this paper, we highlight the challenges and
complexities within the multimodal recommendation. To address
them, we introduce LIS, which measures the upper bound of given
preference data, preventing computational overhead from training
MLLMs. Moreover, we also introduce a novel approach that aligns
MLLMs with the sparse embeddings learned by the recommender.
The online A/B tests on two real-world scenarios demonstrated the
effectiveness of our proposed method at scale.

6 Experiments
6.1 Implmentation Details
We conduct large-scale online A/B tests using sparse item ID em-
beddings as preference data, following the validation described in
Section 4. Our experimental setup employs InternVL [4] as the base
MLLM, with all sparse embeddings extracted from the production
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Figure 1: This figure shows how to validate preference data with LIS and how we conduct online A/B tests, where we use ID
embeddings as an example of preference data.

ranking model snapshot of May 2024. For data pre-processing, we
only retain item embeddings with more than 10000 updates to guar-
antee statistical reliability. Additionally, we apply data curation
inspired by MetaCLIP [27]. During MLLM training, we monitor
convergence using the mean recall metric on the validation set.

We evaluate the learned representation in two real-world scenar-
ios, Content Feed and Display Ads, of Xiaohongshu’s Explore Feed
production. Note that the ranking models for these two scenarios
are separate, so we train distinct MLLMs for each scenario. The con-
trol group comprises 10% of randomly selected Xiaohongshu users
and applies the production ranking model. For the treatment group,
we also randomly select 10% of users. Each group contains tens of
millions of users, with no overlap between groups. Compared to
the control group, the ranking model in the treatment group incor-
porates learned representations as an additional feature, which is
the only difference between models in two groups. The added fea-
ture—a dense vector with fewer than 100 dimensions—introduces
negligible parameter growth, maintaining experimental validity.

6.2 Online A/B Tests
For the Content Feed scenario, the experiment was conducted in
December 2024. We observe statistically significant improvements
across all four key performance metrics: time spent, the number of
reads, the number of engagements, and APP lifetime over 30 days
(LT30), as presented in Table 2.

Table 2: Online A/B test result in the Content Feed scenario
of Xiaohongshu’s Explore Feed.

Time Reads Engagements LT30
Improvement +0.13% +0.27% +0.40% +0.02%

For the Display Ads scenario, the experiment was conducted in
November 2024. We observe statistically significant improvements
across all four key performance metrics, as shown in Table 3, where
Advertiser Value (ADVV) and COST indicate the value of advertise-
ments, while Impression and CTR represent the user experience.

Table 3: Online A/B test result in the Display Ads scenario of
Xiaohongshu’s Explore Feed.

Impression ADVV COST CTR
Improvement +0.32% +0.86% +0.79% +0.43%

In the aforementioned experiments, we utilized the recommender’s
representations as preference data and aligned the MLLM with the
recommender system through this approach, achieving promising
results. It’s worth noting that in our scenario, an item’s life-cycle
is typically much shorter than 3 months, while the time interval
between collecting preference data and conducting online experi-
ments was maintained at least 4 months. That is, none of the items
in the preference data appeared as target items during online exper-
iments. Even when directly using the preference data as input for
online experiments, no improvement could be obtained. Therefore,
the online improvement primarily stem from the MLLM extracting
generalizable patterns from the preference data and successfully
applying them to previously unseen items.

7 Limitations
While LIS measures the upper bound of given preference data, two
challenges remain. First, how to approach the bound, i.e., how to
maximize the MLLM’s ability to learn the information contained
in the preference data. We argue that, in addition to improving
the MLLM’s general capabilities, potential approaches may include
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hard mining and curriculum learning. The second challenge con-
cerns how to effectively utilize the learned representations in rec-
ommender systems. Since the leaked information carries highly
predictive information, ranking models can readily extract useful
patterns from it. However, in practical deployment scenarios, the
preference data that MLLMs learn from contains no leaked infor-
mation for online recommenders. Consequently, we contend that
the representations obtained through alignment require further
investigation of their application methodologies.

8 Conclusion
In this paper, we present the leakage impact score (LIS), a novel
metric for multimodal recommendation. LIS enables assessment of
potential effectiveness of preference data before MLLM alignment.
Our approach significantly improves deployment efficiency by pro-
viding an early-stage validation mechanism. We further present
practical insights on preference data construction, demonstrating
that sparse representations learned by ranking models serve as par-
ticularly effective preference data for multimodal recommendation.
Online A/B tests conducted on two production scenarios, Content
Feed and Display Ads in Xiaohongshu’s Explore Feed, demonstrate
significant improvements, confirming the practical value of our
proposed techniques.
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