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Abstract
The training paradigm integrating large language models (LLM) is
gradually reshaping sequential recommender systems (SRS) and has
shown promising results. However, most existing LLM-enhanced
methods rely on rich textual information on the item side and
instance-level supervised fine-tuning (SFT) to inject collaborative
information into LLM, which is inefficient and limited in many
applications. To alleviate these problems, this paper proposes a
practice-friendly LLM-enhanced paradigm with preference pars-
ing (P2Rec) for SRS. Specifically, in the information reconstruction
stage, we design a new user-level SFT task for collaborative infor-
mation injection with the assistance of a pre-trained SRS model,
which is more efficient and compatible with limited text informa-
tion. Our goal is to let LLM learn to reconstruct a corresponding
prior preference distribution from each user’s interaction sequence,
where LLM needs to effectively parse the latent category of each
item and the relationship between different items to accomplish
this task. In the information augmentation stage, we feed each item
into LLM to obtain a set of enhanced embeddings that combine
collaborative information and LLM inference capabilities. These
embeddings can then be used to help train various future SRS mod-
els. Finally, we verify the effectiveness and efficiency of our TSLRec
on three SRS benchmark datasets.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Sequential recommendation, Large language model, Supervised
fine-tuning, Practice-friendly

ACM Reference Format:
Dugang Liu, Shenxian Xian, Xiaolin Lin, Xiaolian Zhang, Hong Zhu, Yuan
Fang, ZhenChen, and ZhongMing. 2024. A Practice-Friendly LLM-Enhanced
Paradigm with Preference Parsing for Sequential Recommendation. In 18th
ACM Conference on Recommender Systems (RecSys ’24), October 14–18, 2024,
Bari, Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
Sequential recommender systems (SRS), which leverage historical
interaction sequences to predict each user’s next most likely item
of interest [1, 16, 20], are core components in many industrial
platforms. A critical step in SRS is learning user preferences from
interaction sequences better. Previous studies have developed many
technical routes for this purpose, the most representative of which
include those based on recurrent neural networks (RNN) [3, 9, 18],
convolutional neural networks (CNN) [21, 24, 26], self-attention [8,
12], and multi-layer perceptron (MLP) [5, 14, 31]. Recently, with the
rapid development of large language models (LLM), the research of
combining LLM with traditional SRS models to reshape the training
paradigm has received increasing attention [29].

Existing LLM-enhanced SRS methods can be classified into three
main categories: text information encoding-based, supervised fine-
tuning (SFT) task-based, and structure distillation-based methods.
The first line focuses on using the rich textual information on the
item side as a bridge between the LLM and SRS models. Then,
it introduces various enhanced information embeddings encoded
by LLM into the SRS model to improve recommendations [6, 22,

ar
X

iv
:2

40
6.

00
33

3v
2 

 [
cs

.I
R

] 
 1

6 
O

ct
 2

02
4

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


RecSys ’24, October 14–18, 2024, Bari, Italy Dugang Liu, et al.

25]. This is also one of the most popular training paradigms. The
second line aims to design different supervised fine-tuning tasks,
which are usually designed based on user interaction feedback, and
inject the collaborative information required for recommendation
into LLM and enable it to learn the preference mapping process
required for recommendation, thus endowing it with the ability to
act as a recommender for sequential recommender systems [15, 30].
The third line uses knowledge distillation to establish information
alignment or transfer between LLM and SRS models at different
layers, enhancing the SRS model’s capabilities [13, 17].

However, as shown in Fig. 1, the success of most existing LLM-
enhanced methods is too dependent on rich item-related textual
information and instance-level SFT tasks, which makes them inef-
ficient and limited in many applications. On the one hand, some
scenarios may lack textual information related to items. On the
other hand, the number of interaction instances in industrial sce-
narios is usually very large, resulting in an excessively high and
unacceptable LLM inference overhead for SFT. To alleviate these
problems, this paper proposes a practice-friendly LLM-enhanced
paradigm with preference parsing (P2Rec) for SRS. The core idea of
our P2Rec is to introduce a new SFT task aimed at reconstructing
users’ prior preference distribution over all item latent categories,
reasoning about the latent category of each item, and determining
the relationship between different items. This reduces the reliance
on textual information and the overhead of LLM from instance to
user level. Finally, extensive experiments are conducted on three
public SRS benchmark datasets to answer the following questions:
1) How does our P2Rec perform compared to the baselines? 2) How
does our P2Rec perform in terms of efficiency? 3) What is the gain
of LLM for SRS in our P2Rec?

SRS

LLM

Title: The Creative Toddler's First Coloring Book
Deacription: 100 everyday things and animals to
color and learn; a fun and educational toddler
coloring book, perfect for toddlers ages 1-3.

Title: The Reverse Coloring Book
Deacription: the book has the colors,  you draw
the lines: the creative possibilities are endless;
includes 50 original works of art, printed on sturdy
paper that's single-sided and perforated.

Instruction: Given the user's historical interactions,
please answer the next traget book the user will most
likely enjoy. 

SFT

Training

Instance-level
supervision

objective
consisting of
the next items

rich text information on the item side

Cooperation

Figure 1: An illustration of a typical LLM-enhanced SRS
model training architecture.

2 Related Work
Sequential recommender systems (SRS) aim to capture user prefer-
ences from their historical interaction sequences and then use them
to predict each user’s next interaction item accurately. As some of
the most representative backbone models, FPMC [19], GRU4Rec [9],
Caser [21], SASRec [12], and FMLP-Rec [31] adopt the form of
Markov chain, recurrent neural network, convolutional neural net-
work, self-attention, and multi-layer perception, respectively, to
model the process of capturing user preferences. Then, many follow-
up works have been developed based on them to improve the effec-
tiveness of this process further [2, 4]. Recently, the great success of
LLM in different tasks has attracted many efforts to apply LLM to

SRS [13, 15, 22]. However, most have limited applicability due to
their instance-level SFT tasks and reliance on textual information.
Our P2Rec aims to provide a novel LLM-enhanced paradigm for SRS,
enabling a better trade-off between performance and efficiency.

3 Problem Formulation
In this section, we first define sequential recommendation with
some necessary notations. We denote the sets of users and items
as U = {𝑢1, 𝑢2, · · · , 𝑢𝑀 } and V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 }, respectively,
where𝑀 and 𝑁 represent the number of users and the number of
items, respectively. Each user 𝑢 ∈ U has an associated a sequence
of historical interactions S𝑢 =

{
𝑣𝑢1 , 𝑣

𝑢
2 , · · · , 𝑣

𝑢
𝑡 , · · · , 𝑣𝑢|S𝑢 |

}
and S𝑢

is arranged by time, where 𝑣𝑢𝑡 ∈ V denotes the item that the
user interacts with at step 𝑡 . We then can formalize the sequential
recommendation task.
Input: The set of historical interaction sequences for all users, i.e.,
S = {S𝑢1 ,S𝑢2 , · · · ,S𝑢𝑀 }.
Output: A SRS model to accurately predict an item 𝑣 that is most
likely to be interacted by a user 𝑢 at the next moment.

4 The Proposed Framework
In this section, we propose a novel practice-friendly LLM-enhanced
paradigmwith preference parsing (P2Rec), including an information
reconstruction stage and an information augmentation stage, that
is more attractive for deployment in industrial SRS. Next, based
on the training pipeline, we will describe these two core stages
in detail. To facilitate understanding, an illustration of our P2Rec
framework is shown in Fig. 2.

4.1 Information Reconstruction Stage
To avoid the overhead dilemma brought by instance-level SFT, we
design a new user-level task for SFT at this stage, aiming to recon-
struct the user’s prior preference distribution over all item latent
categories. This means that using LLM in our P2Rec will have lower
complexity, i.e., reducing from 𝑂 (∑𝑀𝑖=1 |S𝑢𝑖 |) to 𝑂 (𝑀).
4.1.1 Characterize User Preferences. To be compatible with more
practical situations, we limit the side information of items to be
unavailable and then utilize the collaborative knowledge of a pre-
trained SRS model to obtain preliminary latent categories related to
the items. Specifically, given a backbone SRS model𝑀 (Θ) trained
based on the ID paradigm, we can obtain a set of well-trained item
embeddings from it, i.e., {e𝑣1 , e𝑣2 , · · · , e𝑣𝑁 }. We then perform a pre-
grouping operation on them to obtain 𝐾 groups {𝑐1, 𝑐2, · · · , 𝑐𝐾 }
and consider the group index corresponding to each item as its
preliminary latent category. For simplicity, we implement this op-
eration using a 𝑘-means method [7] in our experiments, which can
be defined as follows:

{𝑐1, 𝑐2, · · · , 𝑐𝐾 } ← 𝑘𝑚𝑒𝑎𝑛𝑠 ({e𝑣1 , e𝑣2 , · · · , e𝑣𝑁 }). (1)

After obtaining the mapping relationship between each item and
its group, 𝑐𝑖 = 𝐶 (e𝑣𝑗 ), where 𝐶 (·) denotes the group mapping
function and 𝑐𝑖 denotes the group corresponding to the 𝑗-th item,
we can get the interaction frequency vector g𝑢 =

[
𝑔𝑢1 , 𝑔

𝑢
2 , · · · , 𝑔

𝑢
𝐾

]
of each user in 𝐾 groups based on the items included in each user’s
interaction sequence, i.e., if user 𝑢 interacts with item 𝑣 and 𝑣 ∈ 𝑐𝑖 ,
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LLM

### Instruction: Given user's ... ### Input:   ### Response: 

Prompt

Pre-trained SRS

...

Item Embedding

Group Linear Projection

Linear
Projection

Item Grouping
1 0 0.33

### Input: 2 | 5 | 3 | 9

Group
Mapping

Item ID Set

### Input: item id

Prompt

LLM

Item
Embedding

Linear
Projection

Traversal
All Item IDs

2 | 5 | 3 | 9

3 0 1
Normalize

LoRA

Knowledge-enhanced Embedding

Information Reconstruction Stage Information Augmentation Stage

Various
SRS

Models
1 0 0.33

Integration with
 initial item embedding

Figure 2: The architecture of our practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) framework.

𝑔𝑢
𝑖
will be increased by one; otherwise, it will remain at the initial

value (i.e., 0). In other words, the value of 𝑔𝑢
𝑖
reflects the number

of interactions that user 𝑢 has had with the set of items in the 𝑖-th
group 𝑐𝑖 . A schematic of this process is shown in Fig. 3 for ease
of understanding. To avoid magnitude differences between users
with different activity levels, we will also normalize these vectors
(denoted as g𝑢 ) and use them to characterize user preferences.

Figure 3: Illustration of the process of characterizing user
preferences.

4.1.2 SFT for Reconstructing User Preferences. Next, we modify the
SFT task to take a user’s interaction sequence S𝑢 as input and re-
construct the user’s corresponding preference, i.e., the normalized
interaction frequency vector g𝑢 . Specifically, for ease of description,
we denote the prompt template for this task as three parts, i.e., 𝑑𝑖𝑛𝑠𝑡 :
“Given the user’s purchase history, predict the user’s distribution
among 𝐾 purchase preferences.”, and 𝑑𝑖𝑑𝑠 : S𝑢 , 𝑑𝑟𝑒𝑠 : “Response:”.
Similar to previous work [15], we use the item embeddings pro-
vided by the pre-trained backbone SRS model to replace LLM’s
token embeddings for item IDs in interaction sequences, making
LLM aware of the item correlations behind different IDs. Therefore,
obtaining LLM knowledge embedding h𝑢 based on this prompt can
be expressed as follows.

h𝑢 = 𝐿𝐿𝑀

(
p𝑖𝑛𝑠𝑡 ; 𝑙𝑖𝑛𝑒𝑎𝑟_𝑝𝑟𝑜 𝑗 ( [e𝑣𝑢1 , e𝑣𝑢2 , · · · , e𝑣𝑢|S𝑢 | ]); p𝑟𝑒𝑠

)
, (2)

where p𝑖𝑛𝑠𝑡 and p𝑟𝑒𝑠 denote the token sequence embeddings ob-
tained by LLM for 𝑑𝑖𝑛𝑠𝑡 and 𝑑𝑟𝑒𝑠 , and 𝑙𝑖𝑛𝑒𝑎𝑟_𝑝𝑟𝑜 𝑗 (·) denotes the
operation of projecting each item embedding into the same di-
mension as the token embedding of LLM. Finally, we equip the

knowledge embedding h𝑢 with a group linear projection layer to
generate the normalized interaction frequency vector, i.e.,

ĝ𝑢 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
W𝑔𝑝h𝑢 + b𝑔𝑝

)
, (3)

where W𝑔𝑝 and b𝑔𝑝 are the learnable weight matrix and vector,
and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) is the softmax operation. We use the mean squared
error as a constraint to force the LLM to reconstruct the target
better and adopt LoRA [10] as the fine-tuning paradigm.

L𝑆𝐹𝑇 =

𝑀∑︁
𝑢=1

𝐾∑︁
𝑖=1
(g𝑢𝑖 − ĝ𝑢𝑖 )

2 . (4)

The idea behind this process is that we hope to guide LLM in
learning to reconstruct the user’s prior preference distribution from
the user interaction sequence through a set of user-level examples.
To complete this task, LLM must parse each item’s latent category
and the relationship between items from the preference distribution.
This enhances each item’s potential category to a certain extent,
which will be used in the next stage.

4.2 Information Augmentation Stage
As mentioned above, to accurately reconstruct the normalized fre-
quency interaction vector g𝑢 , LLM must try to infer the latent cate-
gory to which each item belongs. With the power of LLM, we expect
it to recognize the reasonable part of the pre-grouping results (i.e.,
give the same latent category) and correct the unreasonable part
(i.e., provide different latent categories). The knowledge-enhanced
embeddings associated with this inference process will then likely
better characterize each item’s properties and the connections be-
tween different items. Next, we describe using the LLM trained with
SFT to obtain knowledge-enhanced embeddings and inferred latent
categories for each item. Specifically, this can be easily achieved by
replacing the user interaction sequence S𝑢 in the previous stage
with each item ID 𝑣𝑖 as 𝑑𝑖𝑑𝑠 in turn. This can also be viewed as there
are 𝑁 virtual user interaction sequences, each of which includes
only one item. In this case, the embedding obtained by Eq.(2) will
be regarded as the knowledge-enhanced embedding of each item,
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and the vector obtained by Eq.(3) reflects the latent category proba-
bility distribution of each item. Finally, these knowledge-enhanced
embeddings can be directly used to train various future SRS mod-
els. To demonstrate the effectiveness of our P2Rec, especially the
knowledge-enhanced embeddings obtained, in our experiments,
we adopt a simple gating mechanism to combine them with ran-
domly initialized item embeddings of a new backbone SRS model
to represent each item and use them for subsequent training. We
leave exploring more diverse fusion methods as future work, and
an example of this stage can be found on the right side of Fig. 2.

5 Experiments
5.1 Experiment Settings
Dataset and Evaluation Metrics. To evaluate the effectiveness
of our P2Rec, following the setup of previous works [15, 23], we
select three public benchmark datasets in our experiments: Beauty,
MovieLens-1M, and Yelp1, and use the last interactive item, the
penultimate item, and the remaining ones of each user for testing,
validation, and training. We summarize the statistics of the three
processed datasets in Table 1. Two widely used evaluation metrics
will be adopted: hit ratio (HR@𝑘) and normalized discounted cu-
mulative gain (NDCG@𝑘). We report the average metrics for all
users in the testing set, where 𝑘 is set to 5 and 10, respectively.

Table 1: Statistics of the processed datasets.

Dataset #Users #Items #Interactions Density Avg.Length

Beauty 22,363 12,101 198,502 0.07% 8.9
MovieLens-1M 6,040 3,416 999,611 4.84% 165.5

Yelp 30,431 20,033 316,354 0.05% 10.4

Baselines and Implementation Details. We adopt four SRS
methods with different representative architectures as backbone
models to verify the compatibility of our P2Rec: GRU4Rec [9],
Caser [21], SASRec [12], and FMLP-Rec [31]. We also select four
typical LLM-enhanced methods for comparison: POD [13], P5 [11],
LlamaRec [27] and E4SRec [15]. We adopt the implementation in
the RecBole [28] framework for SRS baselines and their own open-
source repositories for LLM-enhanced baselines. Llama2-13B is
taken as the backbone large language model. For a fair compari-
son, we set the learning rate to 1𝑒−4, the batch size to 1024, the
embedding dimension to 256, and using the Adam as optimizer. We
carefully tune the unique parameters of each baseline according to
the suggestions in the original papers. We also use an early stopping
strategy, with the patience set to 10 times, to obtain the best model
based on the NDCG@10 on the validation set. We will make the
source codes publicly available once the paper has been accepted.

5.2 RQ1: Performance Comparison
In addition to all baselines, to better evaluate the advantage of our
P2Rec in inferring and utilizing the latent category information of
items, we additionally introduce a variant (denoted as ‘CI’) that
takes the pre-grouped index of each item as a feature and initializes
a learnable embedding for it in the backbone model. We report
1https://github.com/RUCAIBox/RecSysDatasets

the comparison results in Table 2. We can have the following ob-
servations: 1) Our P2Rec outperforms the base backbone model
and the variant using pre-grouping results in all cases. This shows
the effectiveness of our proposed SFT task and the knowledge-
enhanced embeddings obtained by combining the capabilities of
LLM. 2) The performance of existing LLM-enhanced baselines is
dataset-dependent and does not necessarily have an advantage over
traditional methods. However, our P2Rec achieves a stable gain on
all datasets.

5.3 RQ2: Efficiency Analysis
To verify the efficiency of our P2Rec, we take a recent LLM-enhance
baseline, E4SRec, as an example and show the time it and our P2Rec
take to perform LLM in training and inference phases, respectively.
The results are shown in Fig. 4, and comparison with other LLM-
enhanced baselines has similar results. Since our P2Rec modifies
the complexity of SFT to the user level, we can find that its time
to perform LLM in the training phase will be significantly reduced,
especially on MovieLens-1M, which has the most training instances
and the smallest number of users. In addition, since our P2Rec only
needs to obtain the knowledge-enhanced embedding of each item in
the inference phase instead of using each user interaction sequence
for inferencing like E4SRec, it also reduces the overhead. This ef-
ficient property of P2Rec makes it more attractive for industrial
deployment.

Beauty ML1M Yelp0

20000

40000

60000

80000

100000

120000

140000

Ti
m

e 
(s

/e
po

ch
)

Training-E4SRec Training-P2Rec

Beauty ML1M Yelp0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e 
(s

/e
po

ch
)

Inference-E4SRec Inference-P2Rec

Figure 4: The time required to execute LLM in one epoch
in the training and inference phases of P2Rec and E4SRec,
respectively.

5.4 RQ3: In-depth Analysis of P2Rec
Finally, we provide some preliminary insights into how our P2Rec
can leverage LLM’s capabilities to enhance the training of SRS
models. We first compare the latent category vectors inferred for
each item by the well-trained LLM via SFT with their corresponding
pre-grouped indices. The comparison results include three cases: 1)
the categorywith the highest probability in the inferred vector is the
same as the pre-grouping index (denoted as ‘C1’); 2) the categories
with the top three probabilities include the pre-grouping index
(denoted as ‘C2’); 3) others (denoted as ‘C3’). They respectively
mean that the latent categories obtained using LLM in P2Rec agree
with the pre-grouping result, think that an item belongs to multiple
categories (including the pre-grouping result), or disagree with the
pre-grouping result. The results are shown in Fig. 5. We can see
that our P2Rec revised the latent categories of some items based
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Table 2: Results on all datasets, where the best and second best results are marked in bold and underlined, respectively. Note
that ∗ indicates a significance level of 𝑝 ≤ 0.05 based on a two-sample t-test between our method and the best baseline.

Method Beauty MovieLens-1M Yelp
HR@{5,10}↑ NDCG@{5,10}↑ HR@{5,10}↑ NDCG@{5,10}↑ HR@{5,10}↑ NDCG@{5,10}↑

LLM

POD 0.0185 0.0245 0.0125 0.0146 0.0422 0.0528 0.0291 0.0326 0.0476 0.0564 0.0330 0.0358
P5 0.0569 0.0791 0.0403 0.0474 0.2225 0.3131 0.1570 0.1861 0.0289 0.0453 0.0200 0.0252
LlamaRec 0.0591 0.0862 0.0405 0.0492 0.1757 0.2836 0.1113 0.1461 0.0416 0.0605 0.0306 0.0367
E4SRec 0.0527 0.0753 0.0376 0.0448 0.1871 0.2765 0.1234 0.1522 0.0309 0.0473 0.0207 0.0260

GRU4Rec
+Base 0.0369 0.0590 0.0267 0.0329 0.2126 0.2912 0.1451 0.1703 0.0201 0.0365 0.0129 0.0182
+CI 0.0415 0.0603 0.0274 0.0335 0.2131 0.2957 0.1467 0.1734 0.0224 0.0368 0.0143 0.0189
+P2Rec 0.0442 0.0648 0.0299 0.0366 0.2147 0.3020 0.1498 0.1781 0.0242 0.0391 0.0152 0.0200

Caser
+Base 0.0259 0.0429 0.0162 0.0217 0.1902 0.2700 0.1282 0.1539 0.0181 0.0325 0.0113 0.0159
+CI 0.0264 0.0433 0.0169 0.0223 0.1894 0.2722 0.1293 0.1558 0.0192 0.0350 0.0120 0.0166
+P2Rec 0.0300 0.0494 0.0187 0.0249 0.1949 0.2762 0.1331 0.1593 0.0215 0.0366 0.0135 0.0183

SASRec
+Base 0.0551 0.0846 0.0329 0.0424 0.2364 0.3217 0.1631 0.1907 0.0449 0.0637 0.0334 0.0394
+CI 0.0569 0.0836 0.0354 0.0440 0.2315 0.3257 0.1619 0.1924 0.0467 0.0667 0.0344 0.0408
+P2Rec 0.0585 0.0854 0.0371 0.0458 0.2404∗ 0.3315∗ 0.1670∗ 0.1965∗ 0.0475 0.0685 0.0346 0.0414

FMLP-Rec
+Base 0.0577 0.0866 0.0361 0.0455 0.2230 0.3172 0.1545 0.1848 0.0491 0.0698 0.0356 0.0422
+CI 0.0575 0.0868 0.0365 0.0459 0.2273 0.3123 0.1586 0.1861 0.0511 0.0743 0.0365 0.0439
+P2Rec 0.0604∗ 0.0852 0.0445∗ 0.0509∗ 0.2341 0.3192 0.1626 0.1901 0.0531∗ 0.0771∗ 0.0373 0.0451∗

on the pre-grouping results, which may be an essential source of
the gain of our P2Rec. In other words, the LLM in our P2Rec can
better identify each item’s properties with the help of the designed
SFT, which establishes the connections between different items.

GRU4Rec Caser SASRec FMLP-Rec0.0
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Figure 5: The ratio of different comparison cases between
the latent classes obtained by our P2Rec and the pre-grouped
results.

Second, we group each user by activity level and sort them in
ascending order. As shown in Fig. 6, we report the results of our
P2Rec and other baselines on all groups.We can find that the variant
that directly uses the pre-grouping results (i.e., ‘CI’) may encounter
performance bottlenecks in groups with high activity while our
P2Rec consistently gains. This may be because the variant ‘CI’ uses
the same feature embedding for all items in a group, which can
easily confuse, while our P2Rec can provide more fine-grained
enhanced embeddings for each item.

6 Conclusions
In this paper, we consider the limitations of most existing sequen-
tial recommendation models augmented with large language mod-
els (LLM) regarding efficiency and rich textual dependencies and
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Figure 6: The performance results of our P2Rec and baselines
on different user groups.

propose a novel practice-friendly LLM-enhanced paradigm with
preference parsing (P2Rec). Our P2Rec designs a novel supervised
fine-tuning task for LLM in the first stage to reconstruct user pref-
erences and reduce the training complexity to the user level. In the
second stage, we obtain an enhanced and informative embedding
for each item by training a well-trained LLM, which can be directly
used for training various future sequence models. Finally, extensive
experiments verify the effectiveness and efficiency of our P2Rec.
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