
Leveraging LLMs to Enhance a Web-Scale Webpage
Recommendation System

Iman Barjasteh
*
, Jaidev Shah

*
, Amey Barapatre

*
, Rana Forsati

*
, Gang Luo

∗

Fan Wu, Julie Fang, Xue Deng, Blake Shephard, Ronak Shah, Linjun Yang, Hongzhi Li, Rangan

Majumder

{imbarjas,jaidevshah,abarapatre,raforsat,gluo}@microsoft.com

{fwu,juliefang,xuedeng,blakesh,rosh,linjya,hongzl,ranganm}@microsoft.com

Microsoft AI, USA

Abstract
Explore Further @ Bing is a webpage-to-webpage recommendation

product, enhancing the search experience on Bing by surfacing

engaging webpage recommendations tied to the search result URLs.

In this paper, we present our approach for leveraging Large Lan-

guageModels (LLMs) for enhancing our web-scale recommendation

system. We describe the development and validation of our LLM-

powered recommendation quality metric RecoDCG. We discuss

our core techniques for utilizing LLMs to make our ranking stage

quality-aware. Furthermore, we detail Q’ recall, a recall path that en-

hances our system’s candidate generation stage by leveraging LLMs

to produce complementary and engaging recommendation candi-

dates. We also address how we optimize our system for multiple

objectives, balancing recommendation quality with click metrics.

We deploy our work to production, achieving a significant improve-

ment in recommendation quality. We share results from offline and

online experiments as well as insights and steps we took to ensure

our approaches scale effectively for our web-scale needs.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Large Language Models, Quality, Ranking, Recall, Multitask, Large

Scale Recommender System

ACM Reference Format:
Iman Barjasteh

*
, Jaidev Shah

*
, Amey Barapatre

*
, Rana Forsati

*
, Gang Luo

and Fan Wu, Julie Fang, Xue Deng, Blake Shephard, Ronak Shah, Linjun

Yang, Hongzhi Li, Rangan Majumder. 2024. Leveraging LLMs to Enhance

a Web-Scale Webpage Recommendation System. In Proceedings of EARL
’24: Workshop on Evaluating and Applying Recommendation Systems with
Large Language Models at RecSys ’24. ACM, New York, NY, USA, 10 pages.

https://doi.org/XXXXXXX.XXXXXXX

∗
These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large
Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Explore Further, shown in Figure 1, lives as a feature on Bing search

result page and offers query and user agnostic webpage recom-

mendations. Our recommendation system is one of the largest in

industry, with a total index size of over 200 billion webpages. A

significant challenge for developing large scale recommendation

systems remains the challenge of obtaining reliable quality and

relevance labels for training these systems. While human judges

generally provide high quality relevance labels, human labeling is

costly, time-consuming and can often be inconsistent. It is difficult

to scale to a massive scale, constantly changing recommendation

system using solely human labels. This holds true for both training

as well as evaluation of the system.

Many products in industry leverage implicit feedback, such as

user clicks, as a valuable signal for optimizing recommendation sys-

tems. However, excessive focus on click metrics can sometimes re-

sult in a preference for clickbait and low-quality recommendations

[6]. This issue is particularly critical for webpage recommendation

systems due to the significant variability in document quality across

the web. Historically, our system has been trained primarily on user

interaction and behavior signals. Over time, we had observed a re-

curring theme in Bing user dissatisfaction feedback submitted for

our feature, highlighting concerns about clickbait and low-quality

webpage recommendations.

For an index of our size, it is infeasible to curate webpages that

enter our index and we thus ran the risk of exposing users to

spammy, clickbait or even inappropriate webpages. LLMs have

demonstrated an emergent ability to understand user intents and

capture semantic relationships between user intents and document

content. Recent research has demonstrated that LLMs can accu-

rately comprehend web searcher preferences and generate high-

quality relevance labels [11]. Motivated by this, we have developed

RecoDCG, an LLM-powered offline recommendation quality metric

that facilitates rapid evaluation of new techniques. We further use

these quality labels to make our ranking stage quality-aware.

We start with a brief overview of our production webpage-to-

webpage recommendation system and illustrate our use of LLMs for

developing a reliable quality evaluation metric RecoDCG, providing

a playbook of the process we followed. We provide an in-depth

discussion of our quality-aware ranking system in Section 4 and

elaborate on our application of LLMs for complementary candidate

generation in Section 5.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy Microsoft AI

Figure 1: Trigger URL (URL1) with its generated webpage
recommendations underneath Explore Further
2 System Overview
The key product objective for our webpage recommendations fea-

ture is to provide users with interesting, complementary, and rel-

evant documents that are tied to the URLs appearing in the first

3 positions of search results. The best webpage recommendations

either satisfy the user’s next query intent, offer an alternative per-

spective, or introduce an exploratory topic related to URL1. We’ll

use the term URL1 for the primary (trigger) webpage and URL2 for

a recommendation candidate. In Figure 1, the cheatsheet.md is the

URL1 and the recommended webpages under Explore Further are

considered as URL2s.

These recommendations depend solely on the URL1 and are

agnostic to the user as well as the user’s search query. In the recall

stage (candidate selection), we generate relevant candidates tapping

into Bing’s index of several hundred billion web documents. Our

system has multiple recall paths: co-click, collaborative filtering,

a two-tower embedding model, as well as our new LLM powered

recall pass that we will detail in Section 5. As illustrated in Figure

2, candidate webpages are aggregated and sent to our two layer

ranking stage.

Figure 2: Bing Webpage Recommendations System Diagram

2.1 Candidate Generation Stage Overview
Our production system has multiple candidate generators, referred

to as recall paths. Each recall path is tuned to produce a specific

number of candidates from Bing’s 200 billion webpage index. These

candidates are aggregated and de-duplicated before the ranking

stage. We define a co-click (co-occurrence click) between two web-

pages as when multiple Bing user browsing sessions include clicks

on both, indicating a degree relatedness. Building a graph from

co-click information, we learn webpage embeddings using collabo-

rative filtering (CF) at the scale of billions of webpages. We train

a two-tower 6-layer XLM-Roberta [4] based transformer model to

learn embeddings for webpages using click logs as labels, where

each tower processes the URL and its associated text features. At

inference time for a trigger URL1, for both the CF and two-tower

model recall paths, we retrieve similar webpages with Approxi-

mate Nearest Neighbor (ANN) search based on embedding cosine

similarity [5]. In this paper, we introduce a new LLM-powered Q’

recall path for generate diverse and complementary candidates for

hundreds of millions of URL1s. We discuss Q’ recall in detail in

Section 5.

2.2 Ranking Stage Overview
Our system’s ranking stage consists of, in order:

(1) Stage 1: LightGBM ranker with a smaller set of inexpen-

sive features, mainly URL1-URL2 click count and impression

count features over different time windows

(2) Stage 2.a: MT RecoLM: A multitask cross-encoder model

with two heads that are trained for pairwise click prediction

and recommendation quality tasks respectively

(3) Stage 2.b: LightGBM ranker with a larger set of more ex-

pensive features, including cross-encoder model head scores.

Optimized with a pairwise click prediction objective (LTR)

(4) Stage 2.c: Linear combination between the Stage 2 LightGBM

ranker score and the recommendation quality head score

We discuss quality-aware ranking in detail in Section 4.

3 RecoDCG: An LLM-powered WebPage
Recommendation Quality Metric

Motivation Relevance and quality labels from human judges are

expensive and slow to obtain. LLMs have been shown to be strong

and consistent relevance judges, often outperforming human la-

belers [11]. For a recommendation system like ours, new items

(webpages) are constantly entering the index and we cannot af-

ford to crowd-source human judgements each time we scrape our

system. For experiments like new modeling techniques or general

system improvements, we needed an inexpensive, fast and robust

offline quality metric that we could use to compare a new experi-

ment to the production system. Through several cycles of prompt

iteration and metric validation, we developed RecoDCG (Recom-

mendation Discounted Cumulative Gain), an LLM-powered quality

metric designed and tuned to be sensitive to the quality of URL2 as

a webpage recommendation for URL1. Through our metric develop-

ment playbook and our subsequent success with productionizing

quality improvement, RecoDCG illustrates how LLMs can provide

a powerful lever through which we can drive a recommendation

system towards a target product direction. In order to develop an

LLM-powered metric that accurately measures “the recommenda-

tion quality of a URL2 as a recommendation for URL1”, we first

developed a golden label set of URL1-URL2 pairs that was labelled

Leveraging LLMs to Enhance a Web-Scale Webpage Recommendation SystemEARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy

by human judges with a comprehensive and clear product guide-

line. We utilize this golden label set to evaluate different point-wise

quality scoring prompts.

3.1 Golden Label Set G
We collected URL1-URL2 pairs from various sources:

(1) Pairs sampled from logs across languages and markets.

(2) Pairs obtained from Bing user dissatisfaction reports.

(3) Reports of search bugs from third-party vendors.

(4) Hard Pairs: Pairs selected to exhibit disagreement between

click rate and the quality label from a simple baseline quality

prompt: high click rate and low recommendation quality,

and vice versa.

The collected set underwent blind human labeling (team mem-

bers trained with detailed labeling guidelines) to assign a binary

ground truth label: Good or Bad. Judging URL1-URL2 pairs for rec-

ommendation quality can in practice be a challenging and loosely

defined task; whenever two human labels disagreed, we updated

our labeling guidelines in a group setting and arrived at the final

label through majority consensus. There were several such edge

cases for which we arrived at a product consensus through this pro-

cess. This included segments like subpages as well as establishing

clear definitions of what met the bar for clickbait and spam.

3.2 Prompt Development and Evaluation
3.2.1 Pairwise Accuracy Metric: This metric evaluates the consis-

tency of predicted orderings with respect to a golden set of labels.

It is defined as the ratio of the number of pairs where the predicted

order agrees with the golden set order to the total number of pairs

where the label order differs. Since PA has a combinatorial definition

(involving all pairs), we developed an optimized implementation

leveraging matrix operations to ensure efficient computation on

large evaluation sets.

The Pairwise Accuracy (PA), reported on the golden label set G,

is formally defined as:

𝑃𝐴 =

∑
𝑖< 𝑗 𝐼 ((𝑦𝑖 < 𝑦 𝑗) = (𝑦𝑖 < 𝑦 𝑗))∑

𝑖< 𝑗 𝐼 (𝑦𝑖 ≠ 𝑦 𝑗)
where:

• 𝐼 (·) is the indicator function
• 𝑦𝑖 , 𝑦 𝑗 are the predicted values for items 𝑖 and 𝑗 , respectively.

• 𝑦𝑖 , 𝑦 𝑗 are the true labels for items 𝑖 and 𝑗 , respectively.

3.2.2 Prompt Candidates and Results: We develop a pointwise

prompt for quality scoring and tune the instructions by evaluating

prompt candidates using the golden label set G. Prompt instructions

and their phrasing is known to have significant difference in per-

formances [17]. We use GPT-4 and evaluate each prompt candidate

on its Pairwise Accuracy (PA) on the golden label set.

Table 1 displays a select few prompt candidates with their Pair-

wise Accuracy (PA). Prompt Candidate A contains label definitions

from 0 to 4 with a set of chain of thought instructions [13] and

role-play instructions [9] that ask GPT-4 to serve as 5 independent

judges and score the recommendation quality from 0 to 4. We av-

erage the 5 scores to obtain a float rating from 0 to 4. Candidate

B additionally introduces granularity using the log probabilities

returned by GPT-4. We obtain the most likely tokens at each po-

sition with their corresponding log probabilities. This enables us

to compute a probability-weighted average across the label classes.

This change alone results in a 2% absolute improvement in PA. For

Candidate C, we additionally break down the scoring task by first

reasoning about individual recommendation aspects (topicality, lo-

cation, authority, and spam awareness) first with chain of thought

instructions. This approach led to a significant absolute improve-

ment in PA of 10%. This highlights the importance of breaking

down a rating task into sub-tasks and having instructions to reason

over these sub-tasks independently.

Version Pairwise Accuracy

Candidate A 0.77

Candidate B (+ use logprobs for score granularity) 0.79

Candidate C (+ reason over recommendation aspects) 0.87

Table 1: Prompt candidates and their pairwise accuracies on
the golden label set G

3.2.3 RecoDCG (Recommendation Discounted Cumulative Gain):
For techniques and any new experiments, we evaluate the quality

improvement through RecoDCG@1 and RecoDCG@5 (since we

show a maximum of 5 recommendations). RecoDCG resembles

the standard Discounted Cumulative Gain, with the differences

being that the relevance scores are LLM generated pointwise scores

and we normalize with the sum of the log discounts. The general

formula for RecoDCG at a particular rank position is given by:

RecoDCG@𝑘 =

∑𝑘
𝑖=1 𝑟𝑒𝑙𝑖 · discount(𝑖)∑𝑘

𝑖=1 discount(𝑖)
Where:
• discount(𝑖) = 1

log
2
(𝑖+1)

• 𝑘 is the position depth.

• 𝑟𝑒𝑙𝑖 is the LLM-generated quality label (linearly scaled to a

range from 0 to 100 by multiplying by 25 since the pointwise

prompt outputs a score from 0 to 4)

3.2.4 RecoDCG offline evaluation set for measuring quality: We

build a set of several thousand URL1s by sampling from the top 3

Bing search results for a curated diverse set of frequent historical

user queries from Bing logs, collected across markets and languages.

To evaluate any new candidate generation improvement or ranking

model technique, we scrape our prouction service for the top 5

ranked webpages for each of the URL1s in this evaluation set and

compute the RecoDCG@1 and RecoDCG@5. All RecoDCG met-

rics reported in this paper are computed by scraping control and

treatment on this evaluation set of selected URL1s.

3.3 Conditional Click Through Rate (CTR)
We use conditional CTR as our primary online metric for online

experiments, as it is conditioned on our feature being triggered and

shown in the Bing impression. Simply defined:

𝐶𝑇𝑅 =
Impressions with at least 1 click on Explore Further

Total Explore Further Impressions

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy Microsoft AI

For brevity, we will refer to this metric as CTR in the rest of the

paper.

3.4 ClickNDCG: Offline Click Prediction
Innerloop

To enhance experimentation agility amidst the finite traffic avail-

able for online A/B tests, we evaluated experiments using an offline

ranking metric, ClickNDCG. This metric serves as an inner loop for

online click-through rate (CTR) optimization. A recommendation

system’s production logs suffer from both position and selection

bias [2]. To collect unbiased logs for an offline evaluation set, we

conducted a 2-week random online experiment on a small percent-

age of traffic. Users were shown a random set of 5 webpages from

the 30 candidates that reach the stage 2 LightGBM Ranker. We

retain logs with at least one satisfied click, defined as a click with a

dwell time over a chosen threshold. We call this the ClickNDCG

evaluation set and we measure NDCG, assigning a relevance score

of 100 to URL2s with a satisfied click and 0 otherwise. The choice of

100 is simply to make the NDCG numbers more interpretable. We

validated through several experiments that ClickNDCG@5 aligns

with online CTR and is sufficiently sensitive such that improve-

ments or regressions in ClickNDCG@5 translate to movements on

online CTR.

3.5 Quality Filtered ClickNDCG: Quality Scores
to remove Spurious and Low-Quality Clicks

Not all clicks are equal. We determine a LLM quality score threshold

that flags low-quality webpages at high precision. Using a threshold

of 1 (on the label scale 0 to 4) to filter out bad recommendation

candidates has a precision of 0.87 on the golden label set. Thus, we

use a threshold of 1 to exclude clicks on poor quality URL2s from

our ClickNDCG evaluation set, removing all impressions where the

clicked URL2 had a quality score of 1 or lower. These clicks typically

correspond to low-quality, irrelevant, or duplicate webpages. The

quality filtered ClickNDCG offline innerloop metric helps provide a

clearer picture between the trade-off between quality improvement

and clicks worth retaining.

4 LLM-enabled Quality-aware Ranking
4.1 RecoLM: A Multi-Objective Cross-encoder

Model
In this section, we describe MT RecoLM, a multitask MiniLM-based

cross-encoder model. MT RecoLM is the most powerful model in

our ranking stack. As a cross-encoder model, MT RecoLM consumes

the text features for a URL1-URL2 pair. In the following sections,

we discuss the teacher model pretraining stage, teacher fine-tuning

stage and our teacher-student knowledge distillation experiments.

4.2 Teacher Pre-training and Domain
Adaptation

We use a 24-layer TuLRv3 [3] model as our base teacher model. For

domain adaptation to web search, a large corpus of Bing search logs

with billions of impressions is collected. The model is pretrained

with the Masked Language Modeling objective as well as ranking

objectives: pairwise dwell time prediction and pairwise logged URL

position prediction. The input to the model during pretraining is

<Query, URL, Title, Snippet> as the goal is to adapt this model to

web search as this model is used by several different teams across

Bing organization.

4.3 Click Teacher
On top of the pre-trained model, the click teacher has a click head

consisting of a few fully connected layers with a single logit output.

To adapt the pre-trained model for webpage recommendation click

prediction, we fine-tune using click logs specifically from the Ex-

plore Further (Web Recommendations) feature. During fine-tuning,

the input to the model is <URL1, Title1, Snippet1, URL2, Title2,

Snippet2> where Title1 is the webpage title for the trigger URL1,

Title2 is the title for URL2 and so on. For generating training data

from the logs, we construct triplets consisting of the trigger URL1, a

clicked URL2
+
, and a non-clicked URL2

−
from the same impression.

We fine-tune on about 1 billion such triplets over a several month

window. We fine-tune the entire model and use softmax pairwise

loss for this task, formulated below.

Pairwise Softmax Loss = log

(
𝑒𝑠url1_url2+

𝑒𝑠url1_url2+ + 𝑒𝑠url1_url2−
)

− log
(

𝑒𝑠url1_url2−

𝑒𝑠url1_url2+ + 𝑒𝑠url1_url2−
) (1)

Where:

• 𝑠
url1_url2

+ is the model score for the positive (clicked) url2.

• 𝑠
url1_url2

− is the model score for the negative (not-clicked)

url2.

During fine-tuning, we apply importance weighting to the loss

for each training instance (URL1, URL2_clicked, URL2_not_clicked).

The importance weight for each instance is calculated as the loga-

rithm of the frequency of the triplet in the collected training logs.

Specifically, if a triplet appears 𝑓 times in the logs, its importance

weight is log(𝑓). The importance weight increases the contribution

of frequent triplets, as triplets with a high 𝑓 in the logs are naturally

more represented in production traffic. Our product has a head-

heavy distribution of URL1s, with a small percentage of popular

URL1s garnering the large portion of impressions. The logarithm

operation helps address the imbalance and tapers the influence of

highly frequent instances, allowing less frequent triplets to have a

more significant impact on the loss function.

4.4 Recommendation Quality Teacher
On top of the pretrained model, the quality teacher has a classifi-

cation head with 5 logits corresponding to the quality classes 0 to

4. We develop a robust labeling pipeline capable of handling large

volume and use it for obtaining quality scores (range from 0 to 4)

for 80 million URL1-URL2 pairs with GPT-4. For fine-tuning the

relevance teacher, we experiment with both cross entropy and soft

cross entropy loss. For cross entropy (CE) loss, we round the quality

scores to the nearest integer, while to obtain soft target probabilities

for soft cross entropy (SCE) Loss, we assign probability mass to the

two closest integer classes.

Leveraging LLMs to Enhance a Web-Scale Webpage Recommendation SystemEARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy

The soft cross entropy (SCE) loss is defined as:

𝐿SCE = −
𝐶∑︁
𝑖=1

𝑝𝑖 log(𝑞𝑖)

where:

• 𝐶 is the number of classes, 5.

• 𝑝𝑖 is the soft target probability for class 𝑖 1

• 𝑞𝑖 is the model’s predicted probability for class 𝑖

As Table 2 illustrates, fine-tuning the teacher model with CE loss

shows marginally better RecoDCG@5 gain compared to SCE loss.

The numbers in the table are both reported as deltas compared to

using the baseline model (Click Teacher) for ranking.

Model RecoDCG@5

CE Loss +8.48 points

SCE Loss +8.29 points

Table 2: Relevance teacher fine-tuning loss: SCE vs CE

4.5 MT RecoLM: Knowledge Distillation
As our product appears on the Bing search results page, our ranking

stage has hard latency requirements. In order to serve online, we

need to distill to a much smaller cross-encoder model. For knowl-

edge distillation, we collect about 1 billion (URL1,URL2) pairs from

a 3 month window and stamp this set with both the click and qual-

ity teachers. We then distill to a 6-layer student model based on

MiniLM [12], with two heads: one for pairwise click prediction and

the other for recommendation quality classification. We coined this

model the MT (Multi-task) RecoLM student model. Both heads are

distilled using MSE (Mean Squared Error) loss. Due to the qual-

ity head having 5 logits compared to the click head’s 1 logit, we

observed a performance imbalance. To address this, we adjusted

the loss weights of the distillation losses, assigning a larger weight

to the click head distillation loss to maintain comparable Click-

NDCG@5 performance. We do continual training: we initialize the

model weights with a checkpoint from the previous productionized

click-prediction only model.

In Table 3, we show how our teacher-student knowledge distil-

lation with the 1 billion (URL1,URL2) distillation data fares against

directly fine-tuning the student model with SCE loss for the qual-

ity classification task on the 80 million GPT-4 labelled data. We

show that distillation demonstrates a significant gain of over 8

points of RecoDCG@5 compared to direct fine-tuning. This high-

lights the important role of distillation for this task when training

multi-objective cross-encoder models for recommendations, even

for web-scale data.

In Table 3, RecoDCG@5 is reported by ranking webpages by

the quality head scores of the MT RecoLM student model. Both ap-

proaches are compared against the baseline single objective student

model (optimized solely for clicks) performance.

4.6 Final Ranking Score
To utilize the 0 − 4 recommendation quality score from our multi-

task transformer model online, we sought an adjustable method to

Model RecoDCG@5

Teacher Distillation (MSE Loss) +9.76

Direct Fine-tuning (SCE Loss) +1.44

Table 3: MT RecoLM student model: Teacher Distillation vs
Fine-tuning

influence the final ranking scores of candidate webpages. Conduct-

ing online A/B flights for various linear and non-linear combination

strategies is impractical. Hence, we leverage the aforementioned

offline evaluation metrics to identify promising settings for online

tests. In the next section, we discuss how the final ranking score is

a combination of the stage 2 LightGBM click ranker score and the

MT RecoLM quality head score and how the combination weight is

determined.

4.7 Trade-off between clicks and
recommendation quality

From several online experiments, we observe clicks and quality

are often misaligned. Frequent cases include URL2s with duplicate

content, clickbait titles, location specific URL2s that redirect to

the same URL1 that get clicks due to click shift, spam URL2s, and

irrelevant yet popular webpages.

In order to inform a deliberate trade-off between CTR and Re-

coDCG as well to decide on a score combination strategy, we evalu-

ate by plotting the trade-off curve of quality filtered ClickNDCG@5

(discussed in section 3.5) and RecoDCG@5 on our offline evaluation

sets. We experiment with several combination strategies including

dynamic weighting based on the magnitude of the quality score as

well as hand-crafted piecewise functions. However, a linear combi-

nation of z-score normalized scores yielded the optimal trade-off

curve.

Figure 3: Trade-off curve: RecoDCG@5 vs quality filtered
ClickNDCG@5

4.8 Linear Combination
After deploying the MT RecoLM student model discussed in the

earlier section, we also re-trained our Stage 2 LightGBM Ranker

after feeding theMT RecoLM student model’s click head and quality

head scores as features. The LightGBM ranker score and the multi-

task studentmodel’s quality head scores are first Z-score normalized

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy Microsoft AI

using the mean and standard deviation computed over a sampled

set of logs that represent production traffic. We deploy a linear

combination between the stage 2 LightGBM ranker score and the

quality head score as:

(1 − 𝜆) ·
lgbm_score − 𝜇

lgbm_score

𝜎
lgbm_score

+ 𝜆 ·
cls_score − 𝜇

cls_score

𝜎
cls_score

• 𝜆: quality weight

• cls_score: recommendation quality head score

• lgbm_score: stage 2 LightGBM ranker score

From the offline evaluation curve shown in Figure 3, a quality

weight (𝜆) of 0.32 was chosen as the right-most point on the tradeoff

curve. It both maximizes the quality filtered ClickNDCG@5 and

provides a large quality improvement as measured through a +5.10
RecoDCG@5 improvement over the production baseline.

5 LLMs for Candidate Generation: Q’ Recall
In this section, we detail our LLM-powered Q’ recall path. We har-

nessed LLMs to create a new recall path for generating relevant

and interesting webpage recommendation candidates that are com-

plementary to those returned by other recall paths.

The overall architecture of this recall path’s offline computation

and online flow is shown in Figure 4.

Offline Pipeline: For each request for a URL1, we employ an

LLM to generate queries Q’ related to the content of the webpage,

that are complementary and relevant enough to yield high-quality

webpage recommendations. Subsequently, we utilize Bing search

to retrieve the top 10 URLs for each generated query. We then

de-duplicate the combined retrieved URL set and filter out low

relevance webpages. For each URL1, we store an array of upto 30

URL2 candidates in a highly performant key-value store.

Online Serving:During online serving, for each user impression

on a trigger URL1, we query the the key-value store to fetch the

URL2 candidate array. These candidates are aggregated with those

from the other recall paths and sent to the ranking stage.

5.1 Q’ Generation Prompt
For generating queries Q’ from a given URL, we leverage the content

of the webpage, including as input the URL, title, and the webpage

body (obtained by processing and cleaning the webpage HTML).

We extensively tuned our prompt to arrive at a version that can

consistently generate a relevant yet complementary set of queries

given a webpage. In developing the query generation prompt, we

employed prompting methods such as few-shot prompting [15, 10]

and chain-of-thought (CoT) [1]. Aside from instructions tailored to

our specific problem, below are some key learnings:

• We found it critical to include non-English few-shot exam-

ples in the prompt and to explicitly instruct the model to

generate queries in the document’s language in order to

avoid language mismatch.

• Instead of instructing the prompt to generate for a specific

number of queries apriori, prompting themodel to stopwhen

query diversity decreases. The average number of queries

generated per URL is roughly 6.

• Instructing the model to score each generated query based

on relevance to the webpage, allowing us to discard queries

with limited relevance in post-processing.

In Table 4, we present a collection of queries generated by GPT-

4 related to Adele’s widely popular song “Hello”. These queries

exhibit diversity and cover various aspects of the song as well as

the artist that a web user may be interested in.

5.2 From Q’ generated queries to Candidate
URLs

Using the generated queries Q’ for a given URL1, we leverage Bing

web search as the retrieval engine to obtain the top 10 URLs for

each Q’ query. We invested heavily in developing and optimizing

a extremely high throughput service to scrape Bing production

at scale for our use case to build a several hundred million Q’

recall index. Subsequently, post-processing filters for spam and

de-duplication are applied to the scraped URLs.

GPT-4 Generated Queries

1- Adele’s new album 30 and its lead single Easy On Me

2- The meaning and aspiration behind Adele’s Hello song

3- The collaboration and production of Adele and Xavier Dolan

for the Hello music video

4- Adele’s musical style and influences over the years

5- Adele’s fan reactions and comments on Hello music video

Mistral-7B Generated Queries

1- Adele’s comeback with 30 album and Easy On Me single

2- The meaning and inspiration behind Hello by Adele

3- The making of Hello music video by Xavier Dolan

4- Adele’s best songs and performances

Table 4: GPT-4 and Mistral-7B generated queries for Adele’s
Hello song page on YouTube.

5.3 GPT-4 powered Q’ Recall Path
Whilst designing our pipeline, to validate the potential of our ap-

proach we used GPT-4 for query generation. We scaled the re-

call path’s index size to approximately 100 million documents.

This method demonstrated end-to-end improvements on both Re-

coDCG@5 as well as online CTR as shown in Table 5. The produc-

tion outcomes in Table 5 are all computed against the baseline of

the previous production system prior to introducing these LLM

techniques for our system.

5.4 Scaling by Supervised Fine-tuning a Small
Language Model (SLM)

A major challenge inherent to having an large index is that in-

ference of GPT-4 sized LLMs is prohibitively expensive and slow.

For iterating on the query generation prompt and then generating

training data we use GPT-4. However, scaling our Q’ recall path to

billions of webpages is crucial for us to enhance candidate selection

meaningfully across the index. Therefore, to achieve scalability,

Leveraging LLMs to Enhance a Web-Scale Webpage Recommendation SystemEARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy

LLM Q’ Generation

Fetch

(30 Url2s)

Q’ Queries
Url1 Sampling

Send to
Ranking Stage

Url1-Url2
pairs

Merge w/ all
recalled docs

Offline

Online

Key-Value Store

Scrape Bing for
Url2s

Post-Process
(de-dup)

Url1Top K

Figure 4: Architecture of LLM Q’ generation recall path. By online we refer to situations when our recommendation systems is
actively engaged with real-time data and user interactions. By offline we refer to scenarios where our system is not directly
interacting with real-time data or users.

we turned to Small Language Models (SLMs) such as Mistral-7B.

Although SLMs may offer lower performance compared to GPT-4

sizedmodels in a few-shot setting, they provide significantly greater

throughput and can be fine-tuned and tailored to a specific task

with better performance [16, 14].

Q’ Training Data Generation: Using GPT-4 and our tuned

prompt, we generate a set of Q’ queries for all 2 million URL1s. We

implement post-processing logic to ensure consistent quality of the

list of generated queries such as filters on length and language.

Supervised Fine-tuning (SFT):We fine-tune Mistral-7b with

SFT using GPT-4 generated Q’ queries as targets and the query

generation prompt with the webpage features as input. For the

finetuning experiments, we use a cluster with 48 Tesla V100-32GB

GPUs. The fine-tuned Mistral-7B maintains comparable generation

quality whilst increasing our throughput by over 60x on the same

hardware compared to GPT-4, enabling us to scale to a 600million Q’

recall index at a fraction of the compute cost. Table 5 demonstrates

the parity performance of using a fine-tuned Mistral-7B versus

using GPT-4 as the Q’ generator, evaluating the respective recall

paths on RecoDCG@5. For fair comparison, for RecoDCG@5 we

report all numbers in 5 on the same triggered subset of URL1s from

the RecoDCG offline evaluation set defined in Section 3.2.4.

The SFT objective is a classification task over the vocabulary V,

using cross-entropy loss:

𝐿 = −
𝑉∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖)

• 𝑉 is the size of the vocabulary.

• 𝑦𝑖 is the 𝑖-th element of the true token vector (one-hot en-

coded).

• 𝑝𝑖 is the predicted probability of the 𝑖-th token in vocabulary.

We use the Adam optimizer [8] for weight updates and set the

learning rate to 1e-5.

Model Overview: Across several SLMs we fine-tuned as Q’

generators, we tested the performance both online (CTR) and offline.

Mistral-7B, released in Sep 2023, proved to be the most performant

model for the task. Mistral-7B is a decoder only model with 7.3B

parameters. It uses Sliding Window Attention (SWA), is trained

with 8𝑘 context length and uses Grouped Query Attention for faster

inference- making it a good fit for fast, web-scale throughput [7].

Table 4 shows examples of the queries generated by fine-tuned

Mistral-7B model compared to those generated by GPT-4 for the

YouTube webpage for Adele’s song Hello.
Evaluation:We present the evaluation results in Table 5, demon-

strating that a recall path constructed by fine-tuning Mistral-7B

for the Q’ task achieves comparable performance to a recall path

with GPT-4, as measured by RecoDCG@5. We obtain a inference

throughput of 60x compared to GPT-4 on the same hardware, en-

abling us to scale to a significantly larger index for the Q’ recall

path. This drives the online CTR gain of Mistral-7B powered recall

path compared to the baseline version powered by GPT-4 in Table 5.

For thoroughness, we conduct an online A/B experiment with the

index size of the Mistral-7B powered recall path matched to that

of the GPT-4 powered recall path. The results of this experiment

demonstrate parity in both online click-through rate (CTR) and

RecoDCG@5 metrics.

5.5 Mistral-7B Enhanced: Refined Training Data
Through Implicit User Feedback (Clicks)

Our experimentation has consistently underscored the critical role

of high-quality data in fine-tuning models. To improve the quality

of our training data, we decided to integrate implicit user feed-

back i.e. clicks. We conduct several online experiments wherein

we surface fixed URL1-URL2 recommendations generated from

the full GPT-4 generated Q’ training data and log user clicks and

interactions. We then refine our training data by retaining only

those queries where the corresponding URLs received a satisfied

click (having a dwell time over a chosen threshold). As a result, we

filtered out each query associated with the candidate URLs that

were not sufficiently interesting or relevant enough to receive any

clicks, thereby adapting the training data for our task leveraging

implicit user feedback.

We fine-tune Mistral-7B again on this refined dataset and call it

Mistral-7B Enhanced.We evaluate this approach with an online A/B

test and find that it demonstrates promising improvements in both

Online CTR and RecoDCG@5, as detailed in Table 5. Due to current

resource constraints, we have not yet deployed a massive-scale Q’

recall index powered by Mistral-7B Enhanced but the demonstrated

gains through this approach may warrant the necessary investment.

https://www.youtube.com/watch?v=YQHsXMglC9A

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy Microsoft AI

A/B Test Online CTR RecoDCG@5

1 Quality-Aware Ranking -1.20% +5.100

2 Q’ Recall (GPT-4) +0.89% +0.760

3 Q’ Recall (Mistral-7B) +1.71% +0.762

4 Q’ Recall (Mistral-7B Enhanced) +1.99% +0.832

5 Deployed Treatment (E2E) +0.52% +5.862

Table 5: Online A/B results and RecoDCG@5 reported with
the baseline system as control for all rows. The deployed
treatment E2E (End-to-End) refers to the combined deploy-
ment of both quality-aware ranking (row 1) and Q’ recall
Mistral-7B (row 3) in the candidate generation stage. The
online CTR improvement of Mistral-7B compared to GPT-4
is coming from the 6x larger index size.

6 Results and Metrics
For the techniques discussed in both the ranking and candidate

generation sections, we provide a set of ablations: online CTR num-

bers (from A/B tests with the baseline system as control) and offline

RecoDCG@5 numbers in Table 5. All CTR and RecoDCG numbers

are compared with respect to the baseline system. The deployed

quality-aware ranking uses a linear combination weight of (𝜆) =

0.32, as discussed in Section 4.8. This demonstrates a 1.2% CTR

regression with a 5.1 point increase in RecoDCG@5. We validate

the CTR regression and explain why we are comfortable making

this tradeoff in the following section. The deployed Q’ recall path

with Mistral-7b gives a 1.71% CTR gain with a 0.762 point improve-

ment in RecoDCG@5. For the combined treatment (Row 1 and Row

3), we report a net 0.52% improvement in CTR and a 5.862 point

improvement in RecoDCG@5 over the baseline system. This is a sig-

nificant quality improvement for our recommendation system that

we deployed to production with no latency increase. Our Q’ recall

path generates candidates through an offline pipeline and the fetch

request at inference time runs in parallel with the other recall paths.

The multi-task student model deployed in quality-aware ranking

maintains the same size as the student model of our baseline system

and the additional classification head computes the quality score

in parallel with the click head. Thereby, our end-to-end latency

remains unaffected.

6.1 Validating the CTR Regression
To analyze the the 1.2% decrease in CTR for Quality-Aware Ranking,

we conducted the following analysis using our online experiment

logs. We collected data by running multiple online experiments

with varying the linear combination weight (𝜆) from 0.1 to 0.5. We

then gathered (URL1, URL2_a, URL2_b) triplets where the LLM-

generated quality label and online click counts disagreed the most.

Subsequently, we conducted a blind review with human judges

(team members calibrated with the help of labeling guidelines),

presenting the webpage contents and asking them to indicate their

preferred candidate between URL2_a and URL2_b for each URL1.

The order of presentation was randomized to ensure that judges

were blind to which URL2 was associated with the treatment. Each

triplet was labeled independently by two judges and if these two

judges disagreed, a third judge cast the tie-breaking vote yielding

the final human judge label.

Our findings show, with statistical significance, that human

judges’ preferences align more closely with the quality labels gener-

ated by LLMs compared to online click counts. Specifically, human

judges’ final assessments agreed with the quality label 54% of the

time, whereas alignment with click counts occurred only 6% of

the time. The remaining 40% of cases were ties, cases where the

human judges exhibited indifference between URL2_a and URL2_b.

This corroborates that RecoDCG serves as a superior indicator of

product quality compared to click counts. Nonetheless, the substan-

tial proportion of ties suggests that there is potential for further

refinement of the RecoDCG metric to enhance its precision. Upon

examining the triplets, we observe that a large chunk of the lost

clicks primarily on URL2s that were duplicate and redirect web-

pages, subpages, clickbait and webpages with limited relevance.

This analysis justified our decision to deploy to the production.

6.2 Improved Product Experience
In Figure 5, we present an example in which the deployed qual-

ity improvement (Treatment T1) leads to a considerably improved

product experience over the baseline system (Control C). The URL1

is a link to the RFM station on radio.net. For this URL1, there is a sig-

nificant difference in RecoDCG@5 between control and treatment,

and thus a large quality difference in the top 5 recommendations

shown. Several of the URL2s in the control slate redirect to URL1

and offer limited value. In our deployed treatment shown on the

right under T1, these are replaced with improved recommendations,

offering a more diverse range of alternative online radio services.

Over the course of the past few months since we have deployed

the treatment to production, we have seen a marked drop in user

dissatisfaction feedback reports from Bing users especially around

duplicate, clickbait/low-quality and low relevance content.

7 Conclusion
We demonstrate how a recommendations system can use LLMs to

develop and validate a reliable offline quality metric that can serve

as an powerful lever to measure improvement and drive product di-

rection.We present our approach to leveraging LLM-generated qual-

ity labels to do quality-aware ranking and discuss the evaluation

and trade-off between quality and clicks. For candidate generation,

we highlight our effective use of LLMs to generate complementary

and diverse recommendation candidates offline. We show that fine-

tuning a SLM enables us to scale to significantly larger index sizes

without compromising Q’ query generation quality. Our overall

deployed technique achieves a significant recommendation quality

gain as well as CTR increase in production, without any meaningful

increase in online costs or latency.

Given the inherent noise in implicit user feedback, particularly

clicks, for future work we plan to leverage high throughput fine-

tuned SLMs to remove spurious, low-quality clicks from the training

data for our ranking models. This helps prevent our ranking models

from generalizing unwanted behavior learned from user clicks such

as an inclination for clickbait titles. We plan to apply the same

idea to our recall paths: cleaning up and augmenting the training

data for our large-scale collaborative filtering training and for the

two-tower dense retrieval model.

Leveraging LLMs to Enhance a Web-Scale Webpage Recommendation SystemEARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy

Figure 5: Example highlighting the improved product experience, URL1: https://www.radio.net/s/rfm

References
[1] Tom Brown et al. “Language models are few-shot learners”. In: Advances in

neural information processing systems 33 (2020), pp. 1877–1901.
[2] Jiawei Chen et al. Bias and Debias in Recommender System: A Survey and Future

Directions. 2021. arXiv: 2010.03240 [cs.IR]. url: https://arxiv.org/abs/2010.
03240.

[3] Zewen Chi et al. InfoXLM: An Information-Theoretic Framework for Cross-
Lingual Language Model Pre-Training. 2021. arXiv: 2007.07834 [cs.CL].

[4] Alexis Conneau et al. Unsupervised Cross-lingual Representation Learning at
Scale. 2020. arXiv: 1911.02116 [cs.CL].

[5] Matthijs Douze et al. The Faiss library. 2024. arXiv: 2401.08281 [cs.LG]. url:
https://arxiv.org/abs/2401.08281.

[6] Nicole Immorlica, Meena Jagadeesan, and Brendan Lucier. Clickbait vs. Quality:
How Engagement-Based Optimization Shapes the Content Landscape in Online
Platforms. 2024. arXiv: 2401.09804 [cs.GT].

[7] Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL]. url: https:
//arxiv.org/abs/2310.06825.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.6980.

[9] Aobo Kong et al. Better Zero-Shot Reasoning with Role-Play Prompting. 2024.
arXiv: 2308.07702 [cs.CL]. url: https://arxiv.org/abs/2308.07702.

[10] Fina Polat, Ilaria Tiddi, and Paul Groth. “Testing Prompt Engineering Methods

for Knowledge Extraction from Text”. In: Semantic Web. Under Review (2024).

[11] Paul Thomas et al. Large language models can accurately predict searcher prefer-
ences. 2024. arXiv: 2309.10621 [cs.IR]. url: https://arxiv.org/abs/2309.10621.

[12] Wenhui Wang et al. MiniLM: Deep Self-Attention Distillation for Task-Agnostic
Compression of Pre-Trained Transformers. 2020. arXiv: 2002.10957 [cs.CL].

[13] JasonWei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. 2023. arXiv: 2201.11903 [cs.CL]. url: https://arxiv.org/abs/2201.11903.

[14] XiaohanXu et al. “A survey on knowledge distillation of large languagemodels”.

In: arXiv preprint arXiv:2402.13116 (2024).
[15] Shengyu Zhang et al. “Instruction tuning for large language models: A survey”.

In: arXiv preprint arXiv:2308.10792 (2023).
[16] Justin Zhao et al. LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical

Report. 2024. arXiv: 2405.00732 [cs.CL]. url: https://arxiv.org/abs/2405.00732.
[17] Yongchao Zhou et al. Large LanguageModels Are Human-Level Prompt Engineers.

2023. arXiv: 2211.01910 [cs.LG]. url: https://arxiv.org/abs/2211.01910.

8 Appendix

Algorithm 1 Convert a float Quality Score to a soft label for Soft

Cross Entropy Loss

1: Input: 𝑙𝑎𝑏𝑒𝑙
2: 𝑠𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 ← [0, 0, 0, 0, 0]
3: 𝑙𝑜𝑤𝑖𝑛𝑑𝑒𝑥 ← 𝑙𝑎𝑏𝑒𝑙%1

4: ℎ𝑖𝑔ℎ𝑖𝑛𝑑𝑒𝑥 ← 𝑙𝑜𝑤𝑖𝑛𝑑𝑒𝑥 + 1
5: 𝑑𝑖 𝑓 𝑓 ← 𝑙𝑎𝑏𝑒𝑙 − (𝑙𝑎𝑏𝑒𝑙%1)
6: 𝑠𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 [𝑙𝑜𝑤𝑖𝑛𝑑𝑒𝑥] ← (1 − 𝑑𝑖 𝑓 𝑓)
7: 𝑠𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑠 [ℎ𝑖𝑔ℎ𝑖𝑛𝑑𝑒𝑥] ← 𝑑𝑖 𝑓 𝑓

8: Output: 𝑠𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑠

Received 2024; revised 2024; accepted 2024

https://arxiv.org/abs/2010.03240
https://arxiv.org/abs/2010.03240
https://arxiv.org/abs/2010.03240
https://arxiv.org/abs/2007.07834
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2401.09804
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2309.10621
https://arxiv.org/abs/2309.10621
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2405.00732
https://arxiv.org/abs/2405.00732
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910

EARL ’24: Workshop on Evaluating and Applying Recommendation Systems with Large Language Models at RecSys ’24, October 14–18, 2024, Bari, Italy Microsoft AI

Figure 6: Final RecoDCG Quality Scoring Prompt Excerpt (Candidate C) with chain of thought instructions for recommendation
dimensions, given <URL1,Title,Snippet1,URL2,Title2,Snippet2>

Figure 7: Q’ Queries Generation Prompt Excerpt given <URL1,Title1,Snippet1>

	Abstract
	1 Introduction
	2 System Overview
	2.1 Candidate Generation Stage Overview
	2.2 Ranking Stage Overview

	3 RecoDCG: An LLM-powered WebPage Recommendation Quality Metric
	3.1 Golden Label Set G
	3.2 Prompt Development and Evaluation
	3.3 Conditional Click Through Rate (CTR)
	3.4 ClickNDCG: Offline Click Prediction Innerloop
	3.5 Quality Filtered ClickNDCG: Quality Scores to remove Spurious and Low-Quality Clicks

	4 LLM-enabled Quality-aware Ranking
	4.1 RecoLM: A Multi-Objective Cross-encoder Model
	4.2 Teacher Pre-training and Domain Adaptation
	4.3 Click Teacher
	4.4 Recommendation Quality Teacher
	4.5 MT RecoLM: Knowledge Distillation
	4.6 Final Ranking Score
	4.7 Trade-off between clicks and recommendation quality
	4.8 Linear Combination

	5 LLMs for Candidate Generation: Q' Recall
	5.1 Q' Generation Prompt
	5.2 From Q' generated queries to Candidate URLs
	5.3 GPT-4 powered Q' Recall Path
	5.4 Scaling by Supervised Fine-tuning a Small Language Model (SLM)
	5.5 Mistral-7B Enhanced: Refined Training Data Through Implicit User Feedback (Clicks)

	6 Results and Metrics
	6.1 Validating the CTR Regression
	6.2 Improved Product Experience

	7 Conclusion
	8 Appendix

